首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11678篇
  免费   1735篇
  国内免费   684篇
电工技术   355篇
综合类   715篇
化学工业   2237篇
金属工艺   787篇
机械仪表   559篇
建筑科学   697篇
矿业工程   663篇
能源动力   1041篇
轻工业   620篇
水利工程   94篇
石油天然气   92篇
武器工业   89篇
无线电   1329篇
一般工业技术   1607篇
冶金工业   523篇
原子能技术   271篇
自动化技术   2418篇
  2024年   26篇
  2023年   676篇
  2022年   644篇
  2021年   628篇
  2020年   760篇
  2019年   595篇
  2018年   561篇
  2017年   615篇
  2016年   719篇
  2015年   620篇
  2014年   937篇
  2013年   979篇
  2012年   1197篇
  2011年   963篇
  2010年   711篇
  2009年   743篇
  2008年   392篇
  2007年   603篇
  2006年   507篇
  2005年   248篇
  2004年   87篇
  2003年   107篇
  2002年   123篇
  2001年   125篇
  2000年   66篇
  1999年   95篇
  1998年   51篇
  1997年   29篇
  1996年   48篇
  1995年   35篇
  1994年   21篇
  1993年   22篇
  1992年   24篇
  1991年   25篇
  1990年   37篇
  1989年   36篇
  1988年   27篇
  1987年   3篇
  1986年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
1.
《Ceramics International》2022,48(9):11981-11987
Previous research have reported that B4C–TiB2 composites could be prepared by the reactive sintering of TiC–B powder mixtures. However, due to spontaneous oxidation of raw powders, using TiC–B powder mixtures with a B/TiC molar ratio of 6: 1 introduced an intermediate phase of C during the sintering process, which deteriorated the hardness of the composites. In this report, the effects of B excess on the phase composition, microstructure, and mechanical properties of B4C–TiB2 composites fabricated by reactive hot pressing TiC–B powder mixtures were investigated. XRD and Raman spectra confirmed that lattice expansion occurred in B-rich boron carbide and BxC–TiB2 (x > 4) composites were obtained. The increasing B content improved the hardness and fracture toughness but decreased the flexural strength of BxC–TiB2 (x > 4) composites. When the molar ratio of B/TiC increased from 6.6:1 to 7.8:1, the Vickers hardness and the fracture toughness of the composites were enhanced from 26.7 GPa and 4.53 MPa m1/2 to 30.4 GPa and 5.78 MPa m1/2, respectively. The improved hardness was attributed to the microstructural improvement, while the toughening mechanism was crack deflection, crack bridging and crack branching.  相似文献   
2.
Given the continuing issues of environment and energy, methane dry reforming for syngas production have sparked interest among researchers, but struggled with the process immaturity owing to catalyst deactivation. This review summarizes the recent advances in the development of efficient and stable catalysts with strong resistance to coking and metal sintering, including the application of novel materials, the assessment of advanced characterizations and the compatibility to improved reaction system. One feasible option is the crystalline oxide catalysts (perovskite, pyrochlore, spinel and LDHs), which feature a fine metal dispersion and surface confinement effect via a metal exsolution strategy and exhibit superior reactivity and stability. Some new materials (h-BN, clays and MOFs) also extend the option because of their unique morphology and microstructure. It also is elaborated that progresses were achieved in advanced characterizations application, leading to success in the establishment of reaction mechanisms and attributions to the formed robust catalysts. In addition, the perspective described the upgrade of reaction system to a higher reaction efficiency and milder reaction conditions. The combination of efficient reaction systems and robust catalysts paves a way for a scaling-up application of the process.  相似文献   
3.
4.
Seawater is the most abundant resource on earth, so developing cost-effective, highly durable corrosion resistance and efficient electrocatalysts are crucial to enhance seawater splitting. Herein, we prepared 3D bristlegrass-like Co-doped Ni2P (Co-Ni2P) composites supported on Ni foam (NF) through a facile solvothermal method combined and a subsequent phosphatization treatment. Benefiting from the unique structure, Co-Ni2P shows excellent electrocatalytic activity as an electrode material for both the hydrogen evolution reaction (HER, low overpotential of 116 mV at 50 mA cm?2) and oxygen evolution reaction (OER, low overpotential of 266 mV at 50 mA cm?2). Moreover, the as-prepared Co-Ni2P composites exhibit excellent stability and corrosion resistance in an alkaline medium. Density functional theory (DFT) calculations were employed to evaluate the H1 adsorption of Co-Ni2P, and the results proved the high catalytic activity for the HER. This study provides new materials with a unique morphology for overall water splitting.  相似文献   
5.

This paper presents a case study of an optimized combination of mine water control, treatment, utilization and reinjection to achieve the zero discharge of mine water. Mine water has been considered a hazard and pollution source during underground mining, so most mining enterprises directly discharge mine water to the surface after simple treatment, resulting in a serious waste of water. Moreover, discharging a large amount of mine water can destroy the original groundwater balance and cause serious environmental problems, such as surface subsidence, water resource reduction and contamination, and adverse impacts on biodiversity. The Zhongguan iron mine is in the major groundwater source area of the Hundred Springs of Xingtai, which is an area with a high risk of potential subsidence. To optimize the balance between mining and groundwater resources, a series of engineering measures was adopted by the Zhongguan iron mine to realize mine water control, treatment, utilization, and reinjection. The installation of a closed grout curtain has greatly reduced the water yield of deep stopes in the mine; the effective sealing efficiency reaches 80%. Nanofiltration membrane separation was adopted to treat the highly mineralized mine water; the quality of the produced water meets China’s recommended class II groundwater standard. Low-grade heat energy from the mine water is collected and utilized through a water-source heat pump system. Finally, zero mine water discharge is realized through mine water reinjection. This research provides a beneficial reference for mines with similar geological and hydrogeological conditions to achieve environmentally sustainable mining.

  相似文献   
6.
7.
《Ceramics International》2021,47(24):34455-34462
Herein, the tungsten trioxide (WO3) nanostructure thin films with different morphologies are firstly fabricated by magnetron sputtering with glancing angle deposition technique (MS-GLAD), followed by the post annealed treatment process in air ambient for 2 h. It is demonstrated that the geometry of MS-GLAD setup, mainly substrate position, played a crucial role in determining the morphology, crystallinity, optical transmittance, and photo-electrochemical (PEC) performance of the WO3 nanostructured thin film. With the different substrate positions in the MS-GLAD system, the WO3 nanorod film layer could be precisely changed to combine an underlying dense layer with a nanorod layer and then nanocolumnar film. Moreover, the prepared samples' chemical composition and work function are studied by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS), respectively. The combining WO3 nanostructure produced high PEC efficiency compared to the single layer of the WO3 nanorods sample and the dense WO3 thin film sample. Thus, morphology-controlled nanostructure film based on the MS-GLAD technique in our study provides a simple approach to enhance the photo-anode for PEC water splitting application.  相似文献   
8.
Zhang  Miao  Chen  Luwang  Yao  Duoxi  Hou  Xiaowei  Zhang  Jie  Qin  Hao  Ren  Xingxing  Zheng  Xin 《Mine Water and the Environment》2022,41(3):775-789

Coal mining can dramatically change hydrogeological conditions and induce serious environmental problems. Fifty groundwater samples were collected from the main aquifers in the Yuaner coal mine (Anhui Province, China). The results show that the main hydrogeochemical processes in the mine include dissolution, precipitation, pyrite oxidation, desulfurization, and cation exchange. The Neogene porous aquifer is affected by groundwater flow conditions; its main hydrogeochemical processes are dissolution of carbonate minerals and gypsum, and cation exchange. The Permian coal measure’s fractured sandstone aquifer was confirmed to be controlled by the region’s geological structure; its main hydrogeochemical processes are desulfurization and cation exchange. The Carboniferous Taiyuan limestone aquifer was determined by both groundwater flow conditions and regional geological structure; its main hydrogeochemical processes are dissolution of carbonate minerals and gypsum, pyrite oxidation, and cation exchange. Additionally, hydrogeochemical inverse modeling of the groundwater flow path confirm the hydrochemistry results and principal component analysis.

  相似文献   
9.
Recently, thermal interface materials (TIMs) are in great demands for modern electronics. For mechanically mixed polymer composite TIMs, the thermal conductivity and the mechanical properties are generally lower than expected values due to the sharply increased viscosity and poor filler dispersion. This work shows that addition of a small amount of polyester-based hyperbranched polymer (HBP) avoided the trade-off in mechanically mixed ABS/hexagonal boron nitride (h-BN) composites. After adding 0.5 wt% HBP, the maximum h-BN content in the composites increased from 50 to 60 wt%. The out-of-plane, in-plane thermal conductivity, and tensile strength of ABS/h-BN with 50 wt% h-BN were 0.408, 0.517 W/mK, and 18 MPa, respectively, and were increased to 0.729, 0.847 W/mK, and 32 MPa by adding 0.5 wt% HBP, while 0.972, 1.12 W/mK, and 29.5 MPa were achieved for ABS/h-BN/HBP with 60 wt% h-BN. The morphological and rheological results proved that these enhancements are due to the improved h-BN dispersion by decreasing viscosity of composites during mixing. Theoretical modeling based on the modified effective medium theory confirmed such results and showed that the interfacial thermal resistance also decreased slightly. Thus, this work demonstrates a facile and scalable method for simultaneously improving the thermal conductivity and mechanical properties of thermoplastic-based TIMs.  相似文献   
10.
《Ceramics International》2020,46(2):1362-1373
Cerium oxide and silicon oxycarbide (Ce/SiOC) porous nanocomposites have been synthesized through the polymer derived ceramic route. In the synthesis of the preceramic precursors, the addition of urea facilitates the deposition of Cerium atoms on the surface of SiO2 nanoparticles since it prevents the SiO2 from agglomeration. Both Ce and urea affects the structural and textural parameters of the obtained ceramics. Less crosslinked structures are formed when the urea concentration increases and it also provokes a reduction of the carbon crystallite size. Cerium, on the other hand, induces an increase of the carbon size as well as the number of SiOC units. Pore anisotropy and smoothness of the surface are also dependent on the composition of the material. As expected, the better thermocatalytic behavior against CO2 decomposition is found at the largest Ce amounts but also, smooth surfaces and low pore anisotropies favor the accessibility of the gases to the thermocatalytic centers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号