首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133125篇
  免费   11015篇
  国内免费   6570篇
电工技术   4187篇
技术理论   4篇
综合类   15784篇
化学工业   15445篇
金属工艺   7036篇
机械仪表   5607篇
建筑科学   44647篇
矿业工程   4725篇
能源动力   2771篇
轻工业   4898篇
水利工程   7456篇
石油天然气   4446篇
武器工业   1048篇
无线电   5581篇
一般工业技术   12445篇
冶金工业   4395篇
原子能技术   605篇
自动化技术   9630篇
  2024年   350篇
  2023年   1627篇
  2022年   3232篇
  2021年   3726篇
  2020年   3627篇
  2019年   2792篇
  2018年   2758篇
  2017年   3466篇
  2016年   3762篇
  2015年   4374篇
  2014年   8318篇
  2013年   6407篇
  2012年   9147篇
  2011年   10130篇
  2010年   7993篇
  2009年   9053篇
  2008年   8324篇
  2007年   9912篇
  2006年   8615篇
  2005年   7516篇
  2004年   6074篇
  2003年   5376篇
  2002年   4622篇
  2001年   3747篇
  2000年   3198篇
  1999年   2566篇
  1998年   1937篇
  1997年   1645篇
  1996年   1244篇
  1995年   1026篇
  1994年   939篇
  1993年   627篇
  1992年   576篇
  1991年   427篇
  1990年   344篇
  1989年   246篇
  1988年   183篇
  1987年   102篇
  1986年   63篇
  1985年   78篇
  1984年   61篇
  1983年   68篇
  1982年   81篇
  1981年   21篇
  1980年   84篇
  1979年   18篇
  1975年   16篇
  1964年   23篇
  1963年   18篇
  1959年   15篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
The current trends in energy were described, the main of which is the use of alternative energy sources, especially hydrogen. The most common methods of hydrogen accumulation were proposed: accumulation of compressed gaseous hydrogen in high-pressure tanks; accumulation of liquid hydrogen in cryogenic tanks; storing hydrogen in a chemically bound state; accumulation of gaseous hydrogen in carriers with a high specific surface area. Based on the combination of advantages and disadvantages, the most promising methods of accumulation were selected: storage of liquid hydrogen and storage of hydrogen in carriers with a high specific surface area. The main requirement for materials for hydrogen storage by these methods was revealed – a high specific surface area. Prospects for the development of waste-free low-emission technologies due to the recycling of secondary raw materials and the development of low-temperature technologies for the synthesis of functional and structural materials were substantiated. The applicability of large-scale ash and slag waste from coal-fired thermal power plants as a raw material for obtaining materials by low-temperature technologies was shown. The traditional ways of using ash and slag waste as a raw material, active additive and filler in the production of cements were described. Modern technologies for the production of innovative materials with a unique set of properties were presented, namely carbon nanotubes, silica aerogel and geopolymer materials. The prospect of using geopolymer matrices as a precursor for the synthesis of a number of materials was described; the most promising type of materials was selected – geopolymer foams, which are mainly used as sorbents for purifying liquids and gases or accumulating target products, as well as heat-insulating materials. The possibility of obtaining products of any shape and size on the basis of geopolymer matrices without high-temperature processing was shown. The special efficiency of the development of the technology of porous granules and powders obtained from a geopolymer precursor using various methods was substantiated. The obtained granules can be used in the following hydrogen storage technologies: direct accumulation of hydrogen in porous granules; creation of insulating layers for liquid hydrogen storage units.  相似文献   
2.
3.
通过固液掺杂、等静压压制、中频烧结的方法,制备了不同的氧化镧、氧化钇、氧化锆三元掺杂成分比例的钨电极材料烧结棒材,探究了不同成分配比对样品显微组织、第二相粒子分布以及宏观力学性能的影响。结果表明,氧化镧、氧化钇、氧化锆三元复合添加能够有效改善第二相粒子在钨基体中的分布形态,降低第二相在晶界的过度富集,提高钨电极材料的综合力学性能。并且当添加成分镧、钇、锆质量比为3:1:1时,材料具有最好的综合力学性能,致密度可达96.04%,显微硬度可达549.37HV0.3,抗压强度可达3785MPa,原因是此配比下第二相粒子最为细小均匀,弥散程度最高,对基体晶粒的细化作用最好,该配比下钨基体平均晶粒尺寸达到10.3μm。  相似文献   
4.
5.
In the Internet of Things (IoT), a huge amount of valuable data is generated by various IoT applications. As the IoT technologies become more complex, the attack methods are more diversified and can cause serious damages. Thus, establishing a secure IoT network based on user trust evaluation to defend against security threats and ensure the reliability of data source of collected data have become urgent issues, in this paper, a Data Fusion and transfer learning empowered granular Trust Evaluation mechanism (DFTE) is proposed to address the above challenges. Specifically, to meet the granularity demands of trust evaluation, time–space empowered fine/coarse grained trust evaluation models are built utilizing deep transfer learning algorithms based on data fusion. Moreover, to prevent privacy leakage and task sabotage, a dynamic reward and punishment mechanism is developed to encourage honest users by dynamically adjusting the scale of reward or punishment and accurately evaluating users’ trusts. The extensive experiments show that: (i) the proposed DFTE achieves high accuracy of trust evaluation under different granular demands through efficient data fusion; (ii) DFTE performs excellently in participation rate and data reliability.  相似文献   
6.
《Ceramics International》2022,48(6):8297-8305
Pure and Sn/Fe co-doped (0.2 at.% Sn and 0.6 at.% Fe, 0.6 at.% Sn and 0.2 at.% Fe, 1.0 at.% Sn and 1.0 at.% Fe) TiO2 nanoparticles were synthesized via a sol-gel method and subsequently calcined at different temperatures. Furthermore, the particles were analyzed by TG-DSC, XRD, TEM, HRTEM, EDS, SAED and UV–Vis for investigating the influences of dopant and calcination temperature on the thermal effect, composition, morphology, energy band gap (Eg) and the degradation efficiency of methyl orange (MO) under various light irradiations respectively. Results indicated that Sn/Fe co-doping inhibited the crystallization transformation from anatase to rutile phase of TiO2 and decreased the Eg. The increased calcination temperature and Sn/Fe co-doped effect brought about the abnormal grain growth of TiO2 nanoparticles. 0.6 at.% Sn/0.2 at.% Fe and 1.0 at.% Sn/1.0 at.% Fe co-doped TiO2 nanoparticles presented better photocatalytic performance than pure and 0.2 at.% Sn/0.6 at.% Fe co-doped TiO2 nanoparticles under visible light irradiation mainly due to the decreased Eg. On the contrary, 0.2 at.% Sn and 0.6 at.% Fe co-doped TiO2 nanoparticles calcined at 650 °C showed the most excellent photocatalytic performance under UV light irradiation, which was about twice as large as that of pure TiO2 possibly due to the formed hybrid structure of anatase and rutile phase as well as the h+-mediated decomposition pathway.  相似文献   
7.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   
8.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   
9.
Poly(l ‐lactic acid) (PLLA) is a biodegradable and biocompatible thermoplastic polyester produced from renewable sources, widely used for biomedical devices, in food packaging and in agriculture. It is a semicrystalline polymer, and as such its properties are strongly affected by the developed semicrystalline morphology. As a function of the crystallization temperature, PLLA can form different crystal modifications, namely α′‐crystals below about 120 °C and α‐crystals at higher temperatures. The α′ modification is therefore of special importance as it may be the preferred polymorph developing at processing‐relevant conditions. It is a metastable modification which typically transforms into the more stable α‐crystals on annealing at elevated temperature. The structure, kinetics of formation and thermodynamics of α′‐ and α‐crystals of PLLA are reviewed in this contribution, together with the effect of α′‐/α‐crystal polymorphism on the properties of PLLA. © 2018 Society of Chemical Industry  相似文献   
10.
To investigate the effect of cooking temperature (55, 65, 75, 85 and 95 °C) on texture and flavour binding of braised sauce porcine skin (BSPS), sensory acceptance, microstructure and flavour-binding capacity were investigated during the processing of BSPS. Samples cooked at 85 and 95 °C showed better texture and aroma scores. Hardness and chewiness of BSPS were obviously improved at 85 and 95 °C than control group. Collagen structure was significantly destroyed over 85 °C. The porcine skin collagen heated at 85 and 95 °C showed relatively higher flavour-binding capacity than other samples. The improvement of texture of BSPS was mainly attributed to the degradation of collagen. Higher aroma scores of BSPS were related to intense binding abilities with aroma compounds at 85 and 95 °C. Cooking at 85 or 95 °C could be an optimal cooking temperature for BSPS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号