首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142123篇
  免费   13219篇
  国内免费   9045篇
电工技术   5003篇
技术理论   2篇
综合类   8644篇
化学工业   40953篇
金属工艺   12038篇
机械仪表   5402篇
建筑科学   4472篇
矿业工程   2979篇
能源动力   6208篇
轻工业   8116篇
水利工程   1568篇
石油天然气   5606篇
武器工业   833篇
无线电   13677篇
一般工业技术   24290篇
冶金工业   5513篇
原子能技术   1698篇
自动化技术   17385篇
  2024年   367篇
  2023年   2759篇
  2022年   3465篇
  2021年   5658篇
  2020年   4572篇
  2019年   4328篇
  2018年   3954篇
  2017年   4647篇
  2016年   5090篇
  2015年   5269篇
  2014年   7326篇
  2013年   8195篇
  2012年   9078篇
  2011年   11670篇
  2010年   8947篇
  2009年   10018篇
  2008年   8547篇
  2007年   9850篇
  2006年   8689篇
  2005年   7298篇
  2004年   6228篇
  2003年   5449篇
  2002年   4527篇
  2001年   3205篇
  2000年   2849篇
  1999年   2259篇
  1998年   1817篇
  1997年   1396篇
  1996年   1278篇
  1995年   1058篇
  1994年   975篇
  1993年   711篇
  1992年   571篇
  1991年   472篇
  1990年   393篇
  1989年   322篇
  1988年   206篇
  1987年   147篇
  1986年   149篇
  1985年   112篇
  1984年   88篇
  1983年   64篇
  1982年   84篇
  1981年   73篇
  1980年   60篇
  1979年   43篇
  1978年   18篇
  1977年   16篇
  1975年   16篇
  1951年   24篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
101.
102.
The performance of low-to-intermediate temperature (400–800?°C) solid oxide fuel cells (SOFCs) depends on the properties of electrolyte used. SOFC performance can be enhanced by replacing electrolyte materials from conventional oxide ion (O2-) conductors with proton (H+) conductors because H+ conductors have higher ionic conductivity and theoretical electrical efficiency than O2- conductors within the target temperature range. Electrolytes based on cerate and/or zirconate have been proposed as potential H+ conductors. Cerate-based electrolytes have the highest H+ conductivity, but they are chemically and thermally unstable during redox cycles, whereas zirconate-based electrolytes exhibit the opposite properties. Thus, tailoring the properties of cerate and/or zirconate electrolytes by doping with rare-earth metals has become a main concern for many researchers to further improve the ionic conductivity and stability of electrolytes. This article provides an overview on the properties of four types of cerate and/or zirconate electrolytes including cerate-based, zirconate-based, single-doped ceratezirconate and hybrid-doped ceratezirconate. The properties of the proton electrolytes such as ionic conductivity, chemical stability and sinterability are also systematically discussed. This review further provides a summary of the performance of SOFCs operated with cerate and/or zirconate proton conductors and the actual potential of these materials as alternative electrolytes for proton-conducting SOFC application.  相似文献   
103.
《Ceramics International》2021,47(22):31168-31179
Cubic, tetragonal, and monoclinic (Bi2O3)x (Nd2O3)y (WO3)z (x + y + z = 1) solid solutions based on the Bi2O3 oxygen ion conductor have been prepared by solid-state reactions in the ternary system Bi2O3–Nd2O3–WO3. The field of monoclinic compounds with a Bi3·24La2W0·76O10.14-type structure has been shown to account for most of the ternary system. Compounds with a cubic fluorite structure exist at the boundary of the monoclinic phase field in two small regions at high (83–91 mol% Bi2O3, δ-phase) and low (20–55 mol% Bi2O3, δ′-phase) Bi concentrations. The cubic samples of the δ-phase retain their structure only during rapid heating and cooling, but annealing in the range of 300–700 °C results in structure degradation to lower symmetry phases. The monoclinic compounds and Bi-poor cubic compounds (δ′-phase) have good thermal stability. The cubic samples of the δ′-phase are hygroscopic. Their bulk conductivity noticeably increases with atmospheric humidity, suggesting that these materials are potential proton conductors.  相似文献   
104.
In this study, 30 subjects were exposed to different combinations of air temperature (Ta: 24, 27, and 30°C) and CO2 level (8000, 10 000, and 12 000 ppm) in a high-humidity (RH: 85%) underground climate chamber. Subjective assessments, physiological responses, and cognitive performance were investigated. The results showed that as compared with exposure to Ta = 24°C, exposure to 30°C at all CO2 levels caused subjects to feel uncomfortably warm and experience stronger odor intensity, while increased mental effort and greater intensity of acute health symptoms were reported. However, no significant effects of Ta on task performance or physiological responses were found. This indicated that subjects had to exert more effort to maintain their performance in an uncomfortably warm environment. Increasing CO2 from 8000 to 12 000 ppm at all Ta caused subjects to report higher rates of headache, fatigue, agitation, and feeling depressed, although the results were statistically significant only at 24 and 27°C. The text typing performance and systolic blood pressure (SBP) decreased significantly at this exposure, whereas diastolic blood pressure (DBP) and thermal discomfort increased significantly. These effects suggest higher arousal/stress. No significant interaction effect of Ta and CO2 concentration on human responses was identified.  相似文献   
105.
The effect of Li2O on the crystallization properties of CaO-Al2O3-SiO2-Li2O-Ce2O3 slags was investigated. With increasing the Li2O content, LiAlO2 and CaCeAlO4 were the main crystalline phases. LiAlO2 formed for the charge compensating of Li+ ions to [AlO45?]-tetrahedrons, and CaCeAlO4 formed as a result of the charge balance of Ce3+ ions, Ca2+ ions, and [AlO69?]-octahedrons. Increasing the content of Li2O to 10%, the crystallization temperature was the highest, and the incubation time was the shortest. The crystallization ability was strong due to the three factors of strengthening the interaction between ions and ion groups, decreasing the polymerization degree, and increasing the melting temperature. Further increasing the content of Li2O, the crystallization performance was obviously suppressed, because the melting temperature and the force between the cations and the anion groups decreased.  相似文献   
106.
107.
针对牲畜牛身份认证的多牛脸检测场景,本文给出一种基于改进Faster R-CNN的牛脸检测方法。使用Inception v2替换ZF网络作为Faster R-CNN的基础网络,模型精度得到显著提升;针对多牛检测场景对NMS(Non-Maximum Suppression)进行相应优化,使模型的召回率得到显著提升。通过和其他目标检测模型对比实验,本文的改进模型在精确率和召回率上均优于其他模型。  相似文献   
108.
Nonwoven super‐hydrophobic fiber membranes have potential applications in oil–water separation and membrane distillation, but fouling negatively impacts both applications. Membranes were prepared from blends comprising poly(vinylidene fluoride) (PVDF) and random zwitterionic copolymers of poly(methyl methacrylate) (PMMA) with sulfobetaine methacrylate (SBMA) or with sulfobetaine‐2‐vinylpyridine (SB2VP). PVDF imparts mechanical strength to the membrane, while the copolymers enhance fouling resistance. Blend composition was varied by controlling the PVDF‐to‐copolymer ratio. Nonwoven fiber membranes were obtained by electrospinning solutions of PVDF and the copolymers in a mixed solvent of N,N‐dimethylacetamide and acetone. The PVDF crystal phases and crystallinities of the blends were studied using wide‐angle X‐ray diffraction and differential scanning calorimetry (DSC). PVDF crystallized preferentially into its polar β‐phase, though its degree of crystallinity was reduced with increased addition of the random copolymers. Thermogravimetry (TG) showed that the degradation temperatures varied systematically with blend composition. PVDF blends with either copolymer showed significant increase of fouling resistance. Membranes prepared from blends containing 10% P(MMA‐ran‐SB2VP) had the highest fouling resistance, with a fivefold decrease in protein adsorption on the surface, compared to homopolymer PVDF. They also exhibited higher pure water flux, and better oil removal in oil–water separation experiments. © 2018 Society of Chemical Industry  相似文献   
109.
《Ceramics International》2022,48(18):26233-26247
A new type of 3D-printable ‘one-part’ geopolymer was synthesized with fly ash (FA), granulated blast furnace slag (GBFS), steel slag (SS) and flue gas desulfurization gypsum (FGD). The effects of SS content (0–40%) on the rheological properties, 3D-printability, mechanical anisotropy and reaction kinetics of geopolymer were investigated. The yield stress and plastic viscosity monotonically decreased with the increasing SS content. Contrarily, the geopolymer with 10% of SS presented better extrudability, buildability and mechanical strength than those with 0, 20%, 30% and 40% of SS. This was mainly attributed to the conflicting influence of SS on geopolymerization, of which the OH? produced by hydration of SS raised the alkalinity of the reaction system and accelerated the dissolution of SiO44? and AlO45?, while the low reactivity prohibited the following polymerization process. Furthermore, the 3D-printed geopolymer presented more compact microstructure and less mechanical anisotropy thanks to the crosslinking of morphologically complementary products, including N(C)-A-S-H, C–S–H, AFt and CH, formed via synergistic reaction of FA-GBFS-SS-FGD system.  相似文献   
110.
Bioactive glasses (BGs) have been used for bone formation and bone repair processes in recent years. This study investigated the titanium substitution effect on 58S BGs (Ti-BGs) 60SiO2-(36 − X)CaO-4P2O5-XTiO2 (X = 0, 3, and 5 mol.%) prepared by the sol-gel technique, and the main goal was to find the optimum amount of titanium in Ti-BGs. Synthesized BGs, which were investigated after immersion in simulated body fluid (SBF), were tested by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy. Moreover alkaline phosphate (ALP) activity, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and antibacterial studies were employed to investigate the biological properties of Ti-BGs. According to the FTIR and XRD test results, hydroxyapatite (HA) formation on Ti-BGs surfaces was confirmed. Meanwhile, the presence of 5 mol.% compared to 3 mol.% increased the HA grain distribution and their size on the Ti-BGs surface. Additionally, MTT and ALP results confirmed that the optimal amount of titanium substitution in BG was 5 mol.%. Since 5 mol.% Ti incorporated BG (BG-5) had the highest biocompatibility level, antibacterial properties, maximum cell proliferation, and ALP activity among the synthesized Ti-BGs, it is presented as the best candidate for further in vivo investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号