首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3029篇
  免费   19篇
  国内免费   62篇
电工技术   21篇
综合类   18篇
化学工业   1735篇
金属工艺   321篇
机械仪表   57篇
建筑科学   7篇
矿业工程   47篇
能源动力   122篇
轻工业   1篇
石油天然气   3篇
武器工业   1篇
无线电   62篇
一般工业技术   492篇
冶金工业   199篇
原子能技术   6篇
自动化技术   18篇
  2024年   1篇
  2023年   89篇
  2022年   112篇
  2021年   127篇
  2020年   111篇
  2019年   116篇
  2018年   148篇
  2017年   154篇
  2016年   121篇
  2015年   58篇
  2014年   135篇
  2013年   212篇
  2012年   146篇
  2011年   334篇
  2010年   122篇
  2009年   169篇
  2008年   155篇
  2007年   127篇
  2006年   112篇
  2005年   77篇
  2004年   80篇
  2003年   73篇
  2002年   53篇
  2001年   56篇
  2000年   31篇
  1999年   37篇
  1998年   38篇
  1997年   24篇
  1996年   23篇
  1995年   25篇
  1994年   16篇
  1993年   8篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
排序方式: 共有3110条查询结果,搜索用时 171 毫秒
1.
High-purity mullite ceramics, promising engineering ceramics for high-temperature applications, were fabricated using transient liquid phase sintering to improve their high-temperature mechanical properties. Small amounts of ultrafine alumina or silica powders were uniformly mixed with the mullite precursor depending on the silica-alumina ratio of the resulting ceramics to allow for the formation of a transient liquid phase during sintering, thus, enhancing densification at the early stage of sintering and mullite formation by the reaction between additional alumina and the residual glassy phase (mullitization) at the final stage of sintering. The addition of alumina powder to the silica-rich mullite precursor resulted in a reaction between the glassy silica and alumina phases during sintering, thereby forming a mullite phase without inhibiting densification. The addition of fine silica powder to the mullite single-phase precursor led to densification with an abnormal grain growth of mullite, whereas some of the added silica remained as a glassy phase after sintering. The resulting mullite ceramics prepared using different powder compositions showed different sintering behaviors, depending on the amount of alumina added. Upon selecting an optimum process and the amount of alumina to be added, the pure mullite ceramics obtained via transient liquid phase sintering exhibited high density (approximately 99%) and excellent high-temperature flexural strength (approximately 320 MPa) at 1500 °C in air. These results clearly demonstrate that pure mullite ceramics fabricated via transient liquid phase sintering with compositions close to those of stoichiometric mullite could be a promising process for the fabrication of high-temperature structural ceramics used in an ambient atmosphere. The transient liquid phase sintering process proposed in this study could be a powerful processing tool that allows for the preparation of superior high-temperature structural ceramics used in the ambient processing atmosphere.  相似文献   
2.
《Ceramics International》2022,48(12):16808-16812
Flash sintering has been reported in various ceramics. Nevertheless, anion and cation conductors exhibit different flash-sintering behaviors, and the interaction mechanism between the conductive species and the sintering environment has remained unclear. Herein, we report the flash-sintering phenomena of a typical cation conductor, Na3Zr2(SiO4)2(PO4) with anode region surrounded by air and NaNO3 environments. The results prove that the ionic behavior and joule heating distribution can be controlled by changing the electrode environment. Four possible scenarios describing the ion migration behavior and interaction with the environment are proposed for providing a guidance for controlling the ion interaction behavior during flash sintering.  相似文献   
3.
The recycling of solid waste is a win-win solution for humans and nature. For this purpose, magnesite tailings and silicon kerf waste were employed to prepare MgO–Mg2SiO4 composite ceramics by solid-state reaction synthesis in the present work. Then, effects of sintering temperature and raw material ratio on as-prepared ceramics were systematically studied. As-prepared ceramics showed improvement in their relative density (from 47.55%–68.12% to 90.96%–95.25%) and cold compressive strength (from 7.34–118.66 MPa to 303.39–546.65 MPa) with the increase in sintering temperature from 1300 to 1600 °C. In addition, it was found that Si promoted synthesis process of Mg2SiO4 phase through transient liquid phase sintering and Fe2O3 accelerated sintering process through activation sintering. Consequently, the presence of Mg2SiO4 phase effectively improved the density and strength of MgO–Mg2SiO4 composite ceramic, while reducing its thermal conductivity. This work provides a potential reutilization strategy for magnesite tailings, and as-prepared products are expected to be applied in fields of construction, metallurgy, and chemical industry.  相似文献   
4.
With co-substitution of (Li0.5Sm0.5) at A site and W at B site, the electrical properties of modified Ca0.92(Li0.5Sm0.5)0.08Bi2Nb2-xWxO9 [(CLS)BN-xW, x = 0, 0.015 and 0.03] piezoceramics with ultrahigh Curie temperature (TC) of > 930 °C were enhanced dramatically. The increased resistivity induced by the co-substitution ensure them to be polarized under an enough high field. Combined with the increase of spontaneous ferroelectric polarization (PS), the significant enhancements in the piezoelectric, dielectric and ferroelectric properties can be obtained in the composition x = 0.015. Furthermore, the piezoelectric activity (d33) and bulk resistivity (ρb) of (CLS)BN-0.015 W can be further enhanced at an appropriate sintering temperature. This optimum composition sintered at 1170 °C shows ultrahigh TC of ~948 °C, d33 of ~17.3 pC/N and ρb of ~6.9 MΩ cm at 600 °C, which are comparable to those of the reported high-temperature Aurivillius piezoceramics with TC > 850 °C.  相似文献   
5.
Bioactive glasses and glass-ceramics (GCs) effectively regenerate bone tissue, however most GCs show improved mechanical properties. In this work, we developed and tested a rarely studied bioactive glass composition (24.4K2O-26.9CaO-46.1SiO2-2.6P2O5 mol%, identified as 45S5-K) with different particle sizes and heating rates to obtain a sintered GC that combines good fracture strength, low elastic modulus, and bioactivity. We analyzed the influence of the sintering processing conditions in the elastic modulus, Vickers microhardness, density, and crystal phase formation in the GC. The best GC shows improved properties compared with its parent glass. This glass achieves a good densification degree with a two-step viscous flow sintering approach and the resulting GC shows as high bioactivity as that of the standard 45S5 Bioglass®. Furthermore, the GC elastic modulus (56 GPa) is relatively low, minimizing stress shielding. Therefore, we unveiled the glass sintering behavior with concurrent crystallization of this complex bioactive glass composition and developed a potential GC for bone regeneration.  相似文献   
6.
One of the drawbacks of fusible clays is the narrow sintering interval due to a sharp increase in the amount of iron-silicate melt at a temperature of 1000–1100 °C, which hardens in the form of a glass phase upon cooling. This leads to a relatively low mechanical strength of the calcined samples and causes the danger of melting the granular material surface from such clays during the firing process. To increase the strength of samples of fusible clays, the influence of diabase and granitoid rocks was considered. It was found that the strengthening effect of diabase and granitoid rock additives in an amount of 20–50% in a mixture with fusible clay is due to an increase of total content of the crystalline phase (mullite, cristobalite and residual quartz) from 18–20% in clays without additives to 22–28 % - in mixtures with diabase and to 28–34% - with granitoid additives) at a temperature of 1050–1100 °C. This increase is due to the activation of synthesis processes of secondary mullite and crystallization from alkali-rich feldspar melt of amorphous silica, released from the structure of clay minerals. The established influence of the igneous rocks used made it possible to develop compositions and propose process flow sheet for producing aluminosilicate proppants based on fusible clays. The use of granitoid and diabase rocks in an amount of 20–70% with fusible clays produces lightweight aluminosilicate proppants with bulk density of 1.40–1.46 g/cm3 at temperature range of 1050–1100 °C, which can endure destructive pressures up to 34.5–52 MPa.  相似文献   
7.
Refining ceramic microstructures to the nanometric range to minimize light scattering provides an interesting methodology for developing novel optical ceramic materials. In this work, we reported the fabrication and properties of a new nanocomposite optical ceramic of Gd2O3-MgO. The citric acid sol-gel combustion method was adopted to fabricate Gd2O3-MgO nanocomposites with fine-grain sizes, dense microstructures and homogeneous phase domains. Nanopowders with low agglomeration and improved sinterability can be obtained by elaborating Φ values. Further refining of the microstructure of the nanocomposites was achieved by elaborating the hot-pressing conditions. The sample sintered at 65 MPa and 1300 °C showed a quite high hardness value of 14.3 ± 0.2 GPa, a high transmittance of 80.3 %–84.7 % over the 3?6 μm wavelength range, due mainly to its extremely fine-grain size of Gd2O3 and MgO (93 and 78 nm, respectively) and high density.  相似文献   
8.
Direct reduction (DR) of iron ore with hydrogen is a potential route for near-zero CO2 steelmaking, but vertical shaft DR reactors require that iron ore fines must first be pelletized. This study reports an investigation of the pelletization and subsequent sintering behaviour of titanomagnetite (TTM) ironsand, which is the main iron ore feedstock for New Zealand’s steel industry. Initially green pellets were bound with bentonite and carboxymethyl-cellulose (Peridur), using an average ironsand particle size of 65 µm. The compressive strength of these pellets after sintering at 1200 °C in air for 2 hr was measured to be 976 N, meeting the expected feedstock requirements for a shaft reactor. This strength was attributed to interparticle bonding arising from extensive recrystallisation of titanohematite grains from oxidation of TTM, as well as the formation of a liquid bonding phase due to melting and diffusion of the binders. Building on these results, alternative binders were then explored in order to lower the required sintering temperature. A combination of both organic and inorganic binders was found to deliver optimum performance, wherein carboxymethyl-cellulose based binders provided strength in the green pellets, whilst inorganic binders, such as calcium borate or ground glass, promoted high sintered strengths.  相似文献   
9.
《Ceramics International》2020,46(14):22581-22591
Biphasic hydroxyapatite/β-tricalcium phosphate foams were prepared using the replication technique starting from a precipitated hydroxyapatite (Ca10(PO4)6(OH)2: HAP) powder, and sodium glycerophosphate (GP). The effect of the grinding time, solid loading, dispersant amount, and etching, replication, and sintering processes were investigated. The SEM, OEM and FTIR analyses proved that the surface of the polyurethane template must be treated with NaOH solution to make it more hydrophilic prior to the coating process. With a solid loading of 40 wt-%, the slurries prepared from the precipitated hydroxyapatite presented a shear thinning behavior, which was useful for the coating process. The SEM analysis of the foams showed that the optimum number of coating layers to obtain foam with an identical structure with the template was limited to three. The use of GP and the optimized preparation parameters helped to decrease the consolidation temperature of the ceramic foams to 1000 °C. The XRD and FTIR analyses of the prepared foams showed that the thermal treatment of the GP and the HAP mixture led to a partial decomposition of the HAP to tricalcium phosphate. The fitting of the XRD patterns and the obtained lattice parameters proved that the decomposition was accompanied by the insertion of sodium from GP toward the lattice of tricalcium phosphate and the formation of Na-β-tricalcium. The results of the SEM analysis, the pore size distribution and the mechanical strength showed that the presence of the Na-β-tricalcium reduced the pore size distribution from 500-2700 to 100–1700 μm, decreased slightly the total porosity from 80 vol-% to 70 vol-%; and improved the mechanical strength of the obtained foam from 1.56 MPa to 2.60 MPa.  相似文献   
10.
Microwave irradiation has been proven to be an effective heating source in synthetic chemistry, and can accelerate the reaction rate, provide more uniform heating and help in developing better synthetic routes for the fabrication of bone-grafting implant materials. In this study, a new technique, which comprises microwave heating and powder metallurgy for in situ synthesis of Ti/CaP composites by using Ti powders, calcium carbonate (CaCO3) powders and dicalcium phosphate dihydrate (CaHPO4·2H2O) powders, has been developed. Three different compositions of Ti:CaCO3:CaHPO4·2H2O powdered mixture were employed to investigate the effect of the starting atomic ratio of the CaCO3 to CaHPO4·2H2O on the phase, microstructural formation and compressive properties of the microwave synthesized composites. When the starting atomic ratio reaches 1.67, composites containing mainly alpha-titanium (α-Ti), hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP) and calcium titanate (CaTiO3) with porosity of 26%, pore size up to 152 μm, compressive strength of 212 MPa and compressive modulus of 12 GPa were formed. The in vitro apatite-forming capability of the composite was evaluated by immersing the composite into a simulated body fluid (SBF) for up to 14 days. The results showed that biodissolution occurred, followed by apatite precipitation after immersion in the SBF, suggesting that the composites are suitable for bone implant applications as apatite is an essential intermediate layer for bone cells attachment. The quantity and size of the apatite globules increased over the immersion time. After 14 days of immersion, the composite surface was fully covered by an apatite layer with a Ca/P atomic ratio approximately of 1.68, which is similar to the bone-like apatite appearing in human hard tissue. The results suggested that the microwave assisted-in situ synthesis technique can be used as an alternative to traditional powder metallurgy for the fabrication of Ti/CaP biocomposites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号