首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4228篇
  免费   219篇
  国内免费   687篇
电工技术   19篇
综合类   346篇
化学工业   259篇
金属工艺   2298篇
机械仪表   99篇
建筑科学   138篇
矿业工程   77篇
能源动力   113篇
轻工业   22篇
水利工程   39篇
石油天然气   86篇
武器工业   36篇
无线电   76篇
一般工业技术   852篇
冶金工业   591篇
原子能技术   66篇
自动化技术   17篇
  2024年   5篇
  2023年   58篇
  2022年   98篇
  2021年   117篇
  2020年   94篇
  2019年   107篇
  2018年   112篇
  2017年   120篇
  2016年   105篇
  2015年   109篇
  2014年   177篇
  2013年   293篇
  2012年   227篇
  2011年   298篇
  2010年   219篇
  2009年   211篇
  2008年   184篇
  2007年   297篇
  2006年   292篇
  2005年   246篇
  2004年   232篇
  2003年   206篇
  2002年   179篇
  2001年   179篇
  2000年   166篇
  1999年   138篇
  1998年   102篇
  1997年   71篇
  1996年   112篇
  1995年   76篇
  1994年   71篇
  1993年   61篇
  1992年   50篇
  1991年   30篇
  1990年   31篇
  1989年   30篇
  1988年   12篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1974年   1篇
排序方式: 共有5134条查询结果,搜索用时 515 毫秒
11.
The effects of joining temperature (TJ) and time (tJ) on microstructure of the transient liquid phase (TLP) bonding of GTD-111 superalloy were investigated. The bonding process was applied using BNi-3 filler at temperatures of 1080, 1120, and 1160 °C for isothermal solidification time of 195, 135, and 90 min, respectively. Homogenization heat treatment was also applied to all of the joints. The results show that intermetallic and eutectic compounds such as Ni-rich borides, Ni−B−Si ternary compound and eutectic-γ continuously are formed in the joint region during cooling. By increasing tJ, intermetallic phases are firstly reduced and eventually eliminated and isothermal solidification is completed as well. With the increase of the holding time at all of the three bonding temperatures, the thickness of the athermally solidified zone (ASZ) and the volume fraction of precipitates in the bonding area decrease and the width of the diffusion affected zone (DAZ) increases. Similar results are also obtained by increasing TJ from 1080 to 1160 °C at tJ=90 min. Furthermore, increasing the TJ from 1080 to 1160 °C leads to the faster elimination of intermetallic phases from the ASZ. However, these phases are again observed in the joint region at 1180 °C. It is observed that by increasing the bonding temperature, the bonding width and the rate of dissolution of the base metal increase. Based on these results, increasing the homogenization time from 180 to 300 min leads to the elimination of boride precipitates in the DAZ and a high uniformity of the concentration of alloying elements in the joint region and the base metal.  相似文献   
12.
《材料科学技术学报》2019,35(7):1309-1314
Degenerate pattern is a seemingly disordered morphology but it exhibits the inherently ordered crystal connected with tip-splitting and limited stability which makes it difficult to observe in the metallic system. Here we employ (100)[011] orientated planar-front seeds using directional solidification and reveal the fundamental origins of the degenerate pattern growth in an Al-4.5 wt% Cu alloy. We find that the spacing of the tip-splitting (λ) in the degenerate of the alloys followed a power law, λV−0.5, and the frequency (f) of the splitting was related to the growth velocity (V) by ƒ∝V1.5. The dimensionless growth direction (θ/θ0) increased monotonously and approached 0.6 with faster velocity, attributed to its anisotropy in the interface kinetics. Once growth velocity exceeded a threshold, two types of pattern transitions from degenerate to regular dendrites were proposed. One of them exhibited a random and chaotic mode and the other underwent a rotation in growth direction.  相似文献   
13.
Directionally solidified microstructures of Al2O3-Er3Al5O12 eutectic and off-eutectic in situ composite ceramics were explored under abrupt-change pulling rate conditions. Corresponding temperature distributions and interface locations were studied. In eutectic composition, fluctuation of eutectic spacing occurred when the pulling rate increased abruptly. A gradually increase or abrupt increase in eutectic spacing was observed when the pulling rate decreased abruptly. In hypoeutectic and hypereutectic compositions, formation of the primary phases were suppressed when the pulling rate increased abruptly from 10?µm/s to 100?µm/s, while primary phases precipitated when the pulling rate decreased abruptly from 100?µm/s to 10?µm/s. The interface altitude decreased after the pulling rate increased abruptly, but increased after the pulling rate decreased abruptly. The liquid composition restriction (around the eutectic composition) at the eutectic interface plays an important role in the suppression of the primary dendrite and coupled eutectic oxides can be obtained in off-eutectic compositions even under higher solidification rate conditions.  相似文献   
14.
ABSTRACT

Nonequilibrium thermodynamics and transportation kinetics near the propagating solid–liquid interface dominates the rapid solidification process, which is far from a thermodynamically stable state. Rapid solidification process can be described more precisely using quantitative thermodynamic calculation of phase diagram with nonlinear liquidus and solidus and evaluating the nonequilibrium effect in diffusion kinetics. Based on these basic principles, we have used a current nonequilibrium dendrite growth model to describe the rapid solidification process and the recalescence temperature of deeply undercooled alloys. Evolution of the key fundamental solidification parameters was also evaluated. The experimental data agree well with the model prediction.  相似文献   
15.
The<100>oriented Fe83Ga17 alloy rods with various NbC contents less than 1at%were prepared by the directional solidification method at a growth rate of 720 mm?h?1. Low NbC-content was found to affect t...  相似文献   
16.
The hexagonal to orthorhombic (HO) transformation from β-Ni3Sn2 (hexagonal) phase to α’-Ni3Sn2 (orthorhombic) phase was confirmed in directionally solidified Sn–Ni peritectic alloys. It is shown that the remelting/resolidification process which is caused by both the temperature gradient zone melting (TGZM) and Gibbs?Thomson (G?T) effects can take place on secondary dendrites. Besides, the intersection angle between the primary dendrite stem and secondary branch (θ) is found to increase from π/3 to π/2 as the solidification proceeds. This is the morphological feature of the HO transformation, which can change the diffusion distance of the remelting/ resolidification process. Thus, a diffusion-based analytical model is established to describe this process through the specific surface area (SV) of dendrites. The theoretical prediction demonstrates that the remelting/resolidification process is restricted when the HO transformation occurs during peritectic solidification. In addition, the slope of the prediction curves is changed, indicating the variation of the local remelting/resolidification rates.  相似文献   
17.
高温度梯度(180K/cm)定向凝固方法可制备单相Mg_2Sn晶体,通过凝固理论对平-胞转换临界速率进行了计算,并预测了单相Mg_2Sn晶体的生长距离,与试验结果相吻合。此方法获得的Mg_2Sn晶体由于去除了第二相Sn的影响,可以获得更好的热电性能,在测试温度区间300~700K内,未掺杂条件下最大Seebeck系数和电导率值分别可达-261μV·K~(-1)和525?-1·m~(-1),通过Bi掺杂来对电导率进行优化后,功率因子最高可达2.29 mW·(m·K~2)~(-1)。单相Mg_2Sn晶体的热导率也得到大幅降低,500 K时,最小值为4.3 W·(m·K)~(-1),Bi掺杂量为1.5%(原子分数)时,热电优值ZT最高可达到0.21。这一方法可以为制备高性能的Mg_2B~(IV)体系三元固溶体合金提供参考。  相似文献   
18.
The main objective of the present work is to study the effect of rapid solidification on the electrochemical performance of Zr-based Laves type alloy with a nominal composition Ti12Zr21.5V10Cr7.5Mn8.1Co8Ni32.2Al0.4Sn0.3. The samples were prepared from the as-cast arc melted buttons by melt spinning at different copper wheel rotation speeds of 5, 16.5, 33, and 100 Hz, which are equivalent to linear speeds of 6.3, 21, 41, and 62.8 m s−1 respectively using a cooling wheel with a diameter of 20 cm. The phase composition and morphology of the ribbons were analyzed by X-Ray diffraction (XRD) and scanning electron microscopy (SEM). The microstructural changes of the ribbons induced by the variations in the wheel rotation speed were found to be closely related to the electrochemical performances. High discharge capacities exceeding 400 mAh∙g−1 were achieved for the melt spun samples during the measurements at low current densities. Furthermore, melt spun casting performed at the highest wheel rotation speed of 100 Hz resulted in the best rate performance of the alloy. As this alloy has the smallest crystallite size, this resulted in the shortest H atoms diffusion distances, and thus increased the efficient H diffusion rate and improved the electrochemical performance.  相似文献   
19.
本文以自主设计的镁合金油气润滑铸造装置制备了直径154mm的AZ80镁合金铸坯,系统研究油气润滑对AZ80镁合金铸坯表面质量和凝固组织的影响,并对其机理进行了探讨。采用结果表明:采用油气润滑铸造时,氩气和润滑油在石墨环内表面形成了一层油气混合膜,改变了熔体和结晶器的接触方式和热交换状态,从而制备出高品质的AZ80镁合金铸坯。随着气体压力的增加,铸坯表面粗大的偏析瘤和皮下偏析层得到抑制,凝固组织得到了明显细化。当气体压力增加到0.4 MPa时,铸坯皮下偏析层厚度从1252μm降至628μm,铸坯R/2、心部晶粒尺寸和二次枝晶间距显著减小。随着凝固组织的细化,Al、Zn和Mn元素的宏观偏析得到了改善。  相似文献   
20.
Mg—5.88Zn—0.53Cu—0.16Zr (wt.%) alloy was solidified at 2—6 GPa using high-pressure solidification technology. The microstructure, strengthening mechanism and compressive properties at room temperature were studied using SEM and XRD. The results showed that the microstructure was refined and the secondary dendrite spacing changed from 35 μm at atmospheric pressure to 10 μm at 6 GPa gradually. Also, Mg(Zn,Cu)2 and MgZnCu eutectic phases were distributed in the shape of network, while under high pressures the second phases (Mg(Zn,Cu)2 and Mg7Zn3) were mainly granular or strip-like. The solid solubility of Zn and Cu in the matrix built up over increasing solidification pressure and reached 4.12% and 0.32% respectively at 6 GPa. The hardness value was HV 90 and the maximum compression resistance was 430 MPa. Therefore, the grain refinement strengthening, the second phase strengthening and the solid solution strengthening are the principal strengthening mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号