首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1485篇
  免费   137篇
  国内免费   61篇
电工技术   135篇
综合类   63篇
化学工业   763篇
金属工艺   34篇
机械仪表   38篇
建筑科学   1篇
矿业工程   4篇
能源动力   21篇
轻工业   42篇
石油天然气   12篇
武器工业   3篇
无线电   139篇
一般工业技术   389篇
冶金工业   1篇
原子能技术   8篇
自动化技术   30篇
  2024年   6篇
  2023年   17篇
  2022年   28篇
  2021年   39篇
  2020年   40篇
  2019年   39篇
  2018年   42篇
  2017年   44篇
  2016年   48篇
  2015年   56篇
  2014年   55篇
  2013年   104篇
  2012年   101篇
  2011年   87篇
  2010年   93篇
  2009年   86篇
  2008年   110篇
  2007年   114篇
  2006年   118篇
  2005年   95篇
  2004年   71篇
  2003年   62篇
  2002年   43篇
  2001年   44篇
  2000年   19篇
  1999年   20篇
  1998年   19篇
  1997年   17篇
  1996年   11篇
  1995年   10篇
  1994年   12篇
  1993年   7篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1951年   1篇
排序方式: 共有1683条查询结果,搜索用时 15 毫秒
41.
电子行业的快速发展对二层型挠性覆铜板的性能提出了更高的要求,针对以聚酰亚胺薄膜为基底材料的二层型挠性覆铜板,分别从改善粘结性能、介电性能和耐热性能3个方面综述了二层型挠性覆铜板的研究进展,并展望了二层型挠性覆铜板的研究方向。  相似文献   
42.
The present study deals with the optimization of polyimide (PI) mechanical properties, obtained by Spark Plasma Sintering (SPS), by using a method combining Design of Experiments (DOE) with physical, structural, and mechanical characterizations. The effects of SPS parameters such as temperature, pressure, dwell time, and cooling rate on the density, mechanical properties, and structure of PI were investigated. The experimental results revealed that the mechanical properties of the material were optimized by raising the sintering temperature up to 350°C. The optimized SPS processing parameters were a temperature of 350°C, a pressure of 40 MPa, and a dwell time of 5 min. Under these conditions, a relative density of 99.6% was reached within only a few minutes. The corresponding mechanical properties consisted of Young's modulus of 3.43 GPa, a Shore D hardness of 87.3, and a compressive strength of 738 MPa for a maximum compressive strain of 61.8%. Moreover, when working at 320°C and at 100 MPa, an increase in the dwell time was necessary to enhance the properties. Contrary to the other parameters, the cooling rate appeared to be a non‐significant parameter. Finally, correlations between the PI structure and the mechanical properties were made to demonstrate the densification mechanisms. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41542.  相似文献   
43.
The copolyimide (co‐PI) fibers with outstanding mechanical properties were prepared by a two‐step wet‐spinning method, derived from the design of combining 4,4′‐oxydianiline (ODA) with the rigid 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA)/p‐phenylenediamine (p‐PDA) backbone. The mechanical properties of PI fibers were drastically improved with the optimum tensile strength of 2.53 GPa at a p‐PDA/ODA molar ratio of 5/5, which was approximately 3.7 times the tensile strength of BPDA/p‐PDA PI fibers. Two‐dimensional wide‐angle X‐ray diffraction indicated that the highly oriented structures were formed in the fibers. Two‐dimensional small‐angle X‐ray scattering revealed the existence of the needle‐shaped microvoids aligned parallel to the fiber axis, and the introduction of ODA led to the reduction in the size of the microvoids. As a result, the significantly improved mechanical properties of PI fibers were mainly attributed to the gradually formed homogeneous structures. The co‐PI fibers also exhibited excellent thermal stabilities of up to 563°C in nitrogen and 536°C in air for a 5% weight loss and glass transition temperatures above 279°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42474.  相似文献   
44.
介绍了几种制备低介电常数聚酰亚胺(PI)材料的方法及其研究进展,包括引入氟原子降低极化率、引入硅氧烷增大自由体积、引入孔洞降低密度以及多种方法相结合共同降低介电常数等,指出了低介电常数PI制备方法的未来发展方向。  相似文献   
45.
利用均苯四甲酸二酐(PMDA)、4,4'-二氨基二苯醚(4,4'-ODA)和自制三单体在强极性非质子有机溶剂N,N-二甲基乙酰胺(DMAc)中进行共缩聚反应,制得高粘度的聚酰胺酸(PAA)溶液,经涂膜、热亚胺化,得到坚韧透明的聚酰亚胺(PI)薄膜,其具有较好的拉伸断裂强度和合适的伸长率;同时将得到的PAA溶液进行湿法纺丝,制成PAA纤维,采用热亚胺化和高温拉伸的方法制得PI纤维,其断裂强度能达到3.67cN/dtex。  相似文献   
46.
47.
Ar ion beam etching (IBE) can be used to roughen a Cu surface and thus improve the adhesion of subsequently spin-coated polyimide (PI) films. During Ar IBE, the surface morphology of sputter-deposited Cu changes from round bumps to a rough cone structure. The ultimate tensile strength (UTS) of the PI/Cu interface is increased for certain specific beam conditions. Under optimal conditions, the UTS of the etched PI/Cu interface (6.2 MPa) is twice that of the unetched PI/Cu interface (3.1 MPa). Cu is detected in the deposited PI by Rutherford backscattering spectrometry (RBS). The amount of Cu at the top surface of the 2.5 μm thick PI film is 0.1 at. %; this is determined by RBS and XPS. While the Cu is dissolved by polyamic acid and diffuses into the PI, an oxygen-rich region is formed in the Cu. The oxygen-rich region in Cu grows from 50 A (approximately Cu2O) before PI deposition to more than 2000 A (where the oxygen concentration is about 5 at. %) after PI deposition. The oxygen source is not the PI itself but either dissociated oxygen from the water vapor in the PI imidization process or a product of the chemical reaction between Cu and polyamic acid.  相似文献   
48.
Polyimide (PI)/modified layered double hydroxide (m‐LDH) nanocomposites were prepared in this study. For this work, m‐LDHs were prepared from layered double hydroxides (LDHs) through an anionic exchange reaction with pyromellitic dianhydride (PMDA), succinic acid or terephthalic acid. PMDA and 4,4′‐oxydianiline were used to make the poly(amic acid) precursor for PI. X‐ray diffraction and transmission electron microscopy measurements confirmed that the PMDA‐modified LDH (PMH) and terephthalic acid‐modified LDH (TMH) were well dispersed in the PI matrix. For the succinic acid‐modified LDH, some of the LDH was intercalated with the succinic acid molecules but most maintained its original structure. Thus, the PI/PMH and PI/TMH nanocomposites exhibited improved mechanical, thermal and electrical properties compared to pure PI. The PMH has aromatic groups and is expected to have better π–π interactions with the PI chains than the other m‐LDHs. Thus, the PI/PMH nanocomposites exhibited the best properties among the nanocomposites investigated. Copyright © 2010 Society of Chemical Industry  相似文献   
49.
A series of polyimides (PIs) with side chains were fabricated from 6‐(4‐phenylphenoxy)hexyl‐3,5‐diaminobenzoate of various ratios with 4,4′‐oxydianiline and 4,4′‐oxydiphthalic anhydride. After PI alignment, films were directly fluorinated using a 10 vol% fluorine/nitrogen mix. The pretilt angle of liquid crystals on the PI films is much improved to more than 20°, and can be continuously controlled by changing the side‐chain content of the PI films from 20 to 100%. The change of the pretilt angles is ascribed to the fluorinated microstructure of molecules at the surface rather than to the surface energy or surface morphology. Moreover, the improvement of rigidity and the steric repulsion of the fluorinated side chains result in an upright conformation of the side chains that leads to the high pretilt angle. Copyright © 2010 Society of Chemical Industry  相似文献   
50.
Ti-6A1-4V/FM-5 polyimide adhesively bonded double cantilever beam (DCB) specimens were aged for 12 months at elevated temperatures (177°C and 204°C) in one of three different environments: ambient atmospheric air pressure and reduced air pressures of 2 psi (13.8 kPa) and 0.2 psi (1.38 kPa), to assess bond durability. The FM-5 polyimide adhesive (Tg~ 250°C) is based on a polyimide developed by NASA Langley Research Center and is produced by Cytec Industries, Inc. Bonds aged for different times were tested to measure the critical strain energy release rate as a function of the temperature and environment. The greatest loss in bond strength occurred after aging in air at 204°C. Following thermal rejuvenation of the aged bonds at 300°C for 2 h, part of the strength loss could be recovered. This strength recovery was attributed to the reversal of physical aging in the adhesive resin. Further evidence for physical aging, which is a thermo-reversible phenomenon, was obtained from tests conducted on neat resin specimens using DMA (dynamic mechanical analysis) and DSC (differential scanning calorimetry). The unrecovered portion of the loss in bond strength following longer-term aging was attributed to chemical aging/degradation of the bonded 'system'. The 'system' in this study includes the adherends, the adhesive, the surface pretreatment (chromic acid anodization, CAA), and their respective interphase/interface regions. Evidence for chemical aging was also seen from weight loss, and Soxhlet extraction data on neat resin specimens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号