首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5657篇
  免费   90篇
  国内免费   55篇
电工技术   6篇
综合类   167篇
化学工业   3004篇
金属工艺   107篇
机械仪表   45篇
建筑科学   302篇
矿业工程   209篇
能源动力   351篇
轻工业   169篇
水利工程   29篇
石油天然气   186篇
武器工业   3篇
无线电   44篇
一般工业技术   884篇
冶金工业   163篇
原子能技术   63篇
自动化技术   70篇
  2024年   4篇
  2023年   40篇
  2022年   97篇
  2021年   143篇
  2020年   152篇
  2019年   149篇
  2018年   128篇
  2017年   147篇
  2016年   155篇
  2015年   116篇
  2014年   250篇
  2013年   338篇
  2012年   256篇
  2011年   348篇
  2010年   234篇
  2009年   419篇
  2008年   370篇
  2007年   319篇
  2006年   382篇
  2005年   314篇
  2004年   304篇
  2003年   269篇
  2002年   206篇
  2001年   96篇
  2000年   67篇
  1999年   68篇
  1998年   45篇
  1997年   36篇
  1996年   43篇
  1995年   40篇
  1994年   34篇
  1993年   35篇
  1992年   33篇
  1991年   22篇
  1990年   16篇
  1989年   11篇
  1988年   27篇
  1987年   23篇
  1986年   13篇
  1985年   7篇
  1984年   13篇
  1983年   12篇
  1982年   6篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1974年   6篇
排序方式: 共有5802条查询结果,搜索用时 46 毫秒
81.
The adsorption of three estrogenic compounds (bisphenol A (BPA), 17beta-estradiol (E2), and 17alpha-ethynyl estradiol (EE2)) on several powdered activated carbons (PAC) was investigated. Without preconcentration, method detection limits (MDL) using high-performance liquid chromatography (HPLC) with fluorescence detection at an excitation wavelength of 280 nm and an emission wavelength of 310 nm were 0.88, 1.15, and 0.96 nM for BPA, E2, and EE2, respectively. Compound recoveries were >90% in raw drinking water matrices. PAC screening studies (six PAC brands) indicated all three compounds were removed by PAC, but the percentage removal ranged from 31% to >99% based upon PAC type/dosage and presence/absence of natural organic matter. The order of removal (E2>EE2>BPA) corresponded with logK(ow) values for the compounds (3.1-4.0, 3.7-3.9, 3.3, respectively). Kinetic and PAC dose-response experiments were conducted with the two best performing PACs. Increasing contact time and PAC dose improved compound removal. Freundlich isotherm parameters were fit to the experimental data. This study confirms that PAC treatment is feasible for >99% removal of three estrogenic compounds from raw drinking waters that may be at risk for containing such compounds, at least at initial concentration of 500 ng/l and higher.  相似文献   
82.
Haberkamp J  Ruhl AS  Ernst M  Jekel M 《Water research》2007,41(17):3794-3802
Membrane fouling by macromolecular dissolved organic compounds is still a fundamental drawback in low-pressure membrane filtration of secondary effluent. In this study, pre-treatment of secondary effluent by coagulation and/or adsorption was investigated in terms of removal of different dissolved organic carbon (DOC) fractions, especially macromolecular substances. DOC fractionation has been characterised by size exclusion chromatography. Adsorption tests using four commercially available activated carbons yielded a removal of small as well as larger organic compounds, revealing differences in the affinity towards macromolecules depending on the type of applied activated carbon. By contrast, coagulation removed predominantly larger molecules, i.e., biopolymers and humic substances. In terms of DOC reduction, the coagulant ferric chloride was superior to aluminium chloride. A combination of coagulation and adsorption resulted in the addition of individual removal efficiencies, suggesting that different fractions of organic compounds were involved in each of the processes. After removal of macromolecular organic compounds either by coagulation or by adsorption, a significant reduction of membrane fouling was observed in tests using two different types of ultrafiltration flat-sheet membranes in 20-h cross-flow filtration tests.  相似文献   
83.
Wang F  Shih K 《Water research》2011,45(9):2925-2930
The persistent nature of perfluorochemicals (PFCs) has attracted global concern in recent years. Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are the most commonly found PFC compounds, and thus their fate and transport play key roles in PFC distribution in the natural environment. As most solid phases in natural water contain alumina, an investigation of PFOS and PFOA adsorption behavior on alumina should prove useful in evaluating the environmental impact of this type of persistent pollutant. Systematic experiments were carried out in this study to investigate the adsorption behavior of PFOS and PFOA onto alumina. The results of adsorption kinetics on alumina show that it takes 48 h to reach equilibrium. The adsorption isotherms reveal maximum adsorption capacities of 0.252 μg/m2 for PFOS and 0.157 μg/m2 for PFOA at pH = 4.3, with the difference primarily due to their different functional groups. An increase in pH leads to a decrease in PFOS and PFOA adsorption on alumina, which may be attributed to the reduction in electrostatic interaction. The adsorption of both PFOS and PFOA decreases with an increase in ionic strength for all four types of cations (Na+, K+, Mg2+, and Ca2+), due to the compression of the electrical double layer. Furthermore, the results also indicate that both Ca2+ and Mg2+ can form bridges with PFOA anions in solution, whereas only PFOS can be bridged by Ca2+ due to the higher covalent nature of magnesium.  相似文献   
84.
Cellulose/chitin beads for adsorption of heavy metals in aqueous solution   总被引:7,自引:0,他引:7  
Zhou D  Zhang L  Zhou J  Guo S 《Water research》2004,38(11):2643-2650
We successfully prepared the biodegradable cellulose/chitin beads by coagulating a blend of cellulose and chitin in 6 wt% NaOH/5 wt% thiourea aqueous solution with 5% H2SO4 as coagulant, and investigated the adsorption of heavy metals (Pb2+, Cd2+, Cu2+) from an aqueous solution on the beads by atomic absorption spectrophotometer. Batch adsorption experiments were carried out as a function of ion concentrations, initial pH, ionic strength, temperature, adsorption time and desorption time. The results revealed that the cellulose/chitin beads could adsorb effectively Pb2+, Cd2+ and Cu2+ ions, and the uptakes of Pb2+, Cd2+ and Cu2+ ions on cellulose/chitin beads were 0.33 mmol/g at pH0 4, 0.32 mmol/g at pH0 5 and 0.30 mmol/g at pH0 4, respectively. Experimental results also showed that the adsorption of these heavy metals was selective to be in the order of Pb2+ > Cd2+ > Cu2+ in a low ion concentration solution. The adsorption equilibrium time of these heavy metals on beads was 4-5 h, but the desorption time was 5-15 min. Moreover, these beads could be regenerated up to about 98% by treating with 1 mol/L HCl aqueous solution. The mechanisms for the removal of free heavy metal ions by cellulose/chitin beads was based on mainly complexation adsorption model, as well as a affinity of hydroxyl groups of the materials on metals. Therefore, we developed new environment-friendly beads prepared by a simple produce process for removal and recovery of heavy metals.  相似文献   
85.
This study describes a process for water treatment by continuous adsorption and electrochemical regeneration using an air-lift reactor. The process is based on the adsorption of dissolved organic pollutants onto an adsorbent material (a graphite intercalation compound, Nyex®1000) and subsequent electrochemical regeneration of the adsorbent leading to oxidation of the adsorbed pollutant. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for adsorption of a sample contaminant, the organic dye Acid Violet 17. The adsorbent circulation rate, the residence time distribution (RTD) of the reactor, and treatment by continuous adsorption and electrochemical regeneration were studied to investigate the process performance. The RTD behaviour could be approximated as a continuously stirred tank. It was found that greater than 98% removal could be achieved for continuous treatment by adsorption and electrochemical regeneration for feed concentrations of up to 300 mg L−1. A steady state model has been developed for the process performance, assuming full regeneration of the adsorbent in the electrochemical cell. Experimental data and modelled predictions (using parameters for the adsorbent circulation rate, adsorption kinetics and isotherm obtained experimentally) of the dye removal achieved were found to be in good agreement.  相似文献   
86.
Deng S  Ting YP 《Water research》2005,39(10):2167-2177
The objective of this work is to develop a surface-modified biosorbent with enhanced sorption capacity for heavy metal ions. The biomass of Penicillium chrysogenum was modified with polyethylenimine (PEI) and then crosslinked with glutaraldehyde. The crosslinked PEI was chemically bonded on the biomass surface through the amine and carboxylate groups on the pristine biomass. The presence of the amine group was confirmed by X-ray photon spectroscopy (XPS) and Fourier transform infrared (FTIR) analysis, and the concentration of the amine groups on the biomass surface was found to be 2 mmol/g through potentiometric titration. The rugged morphology of the biomass surface after the modification was observed by scanning electron microscope (SEM). Compared with the pristine biomass, the modified biomass with amine groups showed a significant increase in sorption capacity for three metal ions, namely, copper, lead and nickel. The sorption isotherms of the biomass for three metals were well described by Langmuir equation, with a maximum sorption at 92 mg copper, 204 mg lead and 55 mg nickel per g biomass. The binding sites for the three metals attributed to the amine groups on the biomass surface were verified by FTIR analysis.  相似文献   
87.
Joseph L  Zaib Q  Khan IA  Berge ND  Park YG  Saleh NB  Yoon Y 《Water research》2011,45(13):4056-4068
In this study, the adsorption of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) from landfill leachate onto single-walled carbon nanotubes (SWCNTs) was investigated. Different leachate solutions were prepared by altering the pH, ionic strength, and dissolved organic carbon (DOC) in the solutions to mimic the varying water conditions that occur in leachate during the various stages of waste decomposition. The youngest and oldest leachate solutions contained varying DOC and background chemistry and were represented by leachate Type A (pH = 5.0; DOC = 2500 mg/L; conductivity = 12,500 μS/cm; [Ca2+] = 1200 mg/L; [Mg2+] = 470 mg/L) and Type E (pH = 7.5; DOC = 250 mg/L; conductivity = 3250 μS/cm; [Ca2+] = 60 mg/L; [Mg2+] = 180 mg/L). These solutions were subsequently combined in different ratios to produce intermediate solutions, labeled B-D, to replicate time-dependent changes in leachate composition. Overall, a larger fraction of EE2 was removed as compared to BPA, consistent with its higher log KOW value. The total removal of BPA and EE2 decreased in older leachate solutions, with the adsorptive capacity of SWCNTs decreasing in the order of leachate Type A > Type B > Type C > Type D > Type E. An increase in the pH from 3.5 to 11 decreased the adsorption of BPA by 22% in young leachate and by 10% in old leachate. The changes in pH did not affect the adsorption of EE2 in the young leachate, but did reduce adsorption by 32% in the old leachate. Adjusting the ionic strength using Na+ did not significantly impact adsorption, while increasing the concentration of Ca2+ resulted in a 12% increase in the adsorption of BPA and a 19% increase in the adsorption of EE2. DOC was revealed to be the most influential parameter in this study. In the presence of hydrophilic DOC, represented by glucose in this study, adsorption of the endocrine disrupting compounds (EDCs) onto the SWCNTs was not affected. In the absence of SWCNTs, hydrophobic DOC (i.e., humic acid) adsorbed 15-20% of BPA and EE2. However, when the humic acid and SWCNTs were both present, the overall adsorptive capacity of the SWCNTs was reduced. Hydrophobic (π-π electron donor-acceptor) interactions between the EDCs and the constituents in the leachate, as well as interactions between the SWCNTs and the EDCs, are proposed as potential adsorption mechanisms for BPA and EE2 onto SWCNTs.  相似文献   
88.
Ultrafiltration is classified as a low-pressure membrane technology which effectively removes particulate matter and microorganisms and to a certain extent dissolved organic matter (15-25%) and colour. The technology has been optimized and is becoming competitive compared to conventional processes for larger scale plant capacities. In combination with activated carbon it is an effective barrier regarding the removal of synthetic organic chemicals. Growing interest in ultrafiltration raises the question of better usage of the adsorption capacity of powdered activated carbon (PAC) used in combination with this low-pressure membrane technique. This paper presents a pilot plant study of different PAC dosing procedures within a combined hybrid membrane IN/OUT process for removal of p-nitrophenol (PNP) from water (c(0)=1mg/L) under real case conditions (e.g. usage of the same module for the whole duration of the experiment, backwashing with permeate water, no separate saturation of the membrane with substance without presence of carbon). p-Nitrophenol was chosen as an appropriate test substance to assess the efficiency of different operation modes. Dead-end and cross-flow filtration were compared with respect to different PAC dosing procedures: continuous dosing into a continuously stirred tank reactor (CSTR) in front of the module and direct dosing into the pipe in front of the module (continuous, single-pulse and multi-pulse dosing). There was no advantage in cross-flow mode over dead-end referring to PNP concentration in the permeate. Relating to the carbon dosing procedure, the best results were obtained for continuous PAC addition. The option of dosing directly into the pipe has the advantage of no additional tank being necessary. In the case of single-pulse dosing, the formation of a carbon layer on the membrane surface was assumed and an LDF model applied for a simplified estimation of the "breakthrough behaviour" in the thus formed "PAC filter layer".  相似文献   
89.
Removal of tetracycline and sulfonamide antibiotics from water by micelles pre-adsorbed on montmorillonite was studied. Micelles of benzyldimethylhexadecylammonium (BDMHDA) were used. Batch experiments demonstrated that the micelle-clay complexes (1% w/w) removed 96-99.9% of antibiotics from their water solutions containing from 5 to 50 mg/L of pharmaceuticals. Column filters (25 cm) made of a mixture of quartz sand and BDMHDA micelle-clay complex at 100:1 w/w ratio removed 94-99.9% of above pharmaceuticals from initial solutions containing 10mg/L and 89% of sulfamethizole from an initial solution containing 10 microg/L of this antibiotic. These filters were also very efficient in the removal of antibiotics in the presence of dissolved soil organic matter removing 89-99% of tetracycline and sulfamethizol from initial solutions containing 10 mg/L of antibiotic in the presence of 8 mg/L of humic acid, or 9 mg/L of fulvic acid. These data indicate that micelle-clay complexes are very efficient for water purification from tetracycline and sulfonamide antibiotics.  相似文献   
90.
The capacity and mechanism of metal hydroxide sludge in removing azo reactive dyes from aqueous solution was investigated with different parameters, such as charge amount of dyes, system pH, adsorbent particle size, and adsorbent dosage. The three anionic dyes used were CI Reactive Red 2, CI Reactive Red 120, and CI Reactive Red 141, increasing in number of sulfonic groups, respectively. Only 0.2% (w/v) of powdered sludge (<75microm) achieved color removal from 30 mg l(-1) reactive dye solutions within 5 min without pH adjustment. The larger the charge amount of the dyes, the greater the adsorption (>90%) on the metal hydroxide sludge. The system pH played a significant role in the adsorption on metal hydroxides and formation of dye-metal complexes. The optimum system pH for dye adsorption was 8-9 which was close to the pH(zpc) of the sludge while the precipitation of dye-metal complexes occurred at system pH 2. The maximum adsorption capacity (Q degrees ) of the sludge for the reactive dyes was 48-62 mg dye g(-1) adsorbent. The Langmuir and Freundlich models showed that the higher charged dyes had a higher affinity of adsorption. The smaller particle size and the greater amount of adsorbent showed the faster process, due to an increase in surface area of adsorbent. Desorption studies elucidated that metal hydroxide sludge had a tendency for ion exchange adsorption of sulfonated azo reactive dyes. Leaching data showed that the treated water was nontoxic at a system pH above 5 or a solution pH above 2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号