首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11130篇
  免费   148篇
  国内免费   248篇
电工技术   164篇
综合类   254篇
化学工业   2823篇
金属工艺   1284篇
机械仪表   689篇
建筑科学   911篇
矿业工程   183篇
能源动力   816篇
轻工业   267篇
水利工程   30篇
石油天然气   83篇
武器工业   55篇
无线电   243篇
一般工业技术   2638篇
冶金工业   710篇
原子能技术   39篇
自动化技术   337篇
  2024年   3篇
  2023年   119篇
  2022年   203篇
  2021年   233篇
  2020年   255篇
  2019年   193篇
  2018年   229篇
  2017年   271篇
  2016年   228篇
  2015年   249篇
  2014年   547篇
  2013年   742篇
  2012年   571篇
  2011年   1013篇
  2010年   715篇
  2009年   687篇
  2008年   706篇
  2007年   622篇
  2006年   566篇
  2005年   521篇
  2004年   481篇
  2003年   381篇
  2002年   327篇
  2001年   257篇
  2000年   205篇
  1999年   217篇
  1998年   210篇
  1997年   159篇
  1996年   122篇
  1995年   124篇
  1994年   111篇
  1993年   74篇
  1992年   61篇
  1991年   31篇
  1990年   30篇
  1989年   20篇
  1988年   12篇
  1987年   10篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1976年   2篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Novel lead-free (1-x)Ba0·9Ca0·1Ti0·9Zr0·1O3-xSrNb2O6 ceramics were synthesized via a two-step high energy ball milling process. The evolution of microstructural properties, phase transformation, and energy storage characteristics was comprehensively investigated to assess the applicability of material in multi-layered ceramic capacitors. The substitution of SrNb2O6 (SNO) in Ba0·9Ca0·1Ti0·9Zr0·1O3 (BTCZ) has resulted in substantial improvement in materials density along with a small increase in the grain size of the synthesized ceramic. A thorough microstructural investigation indicates an excellent dispersibility and compatibility between BTCZ and SNO phases. With an increase in SNO substitution, a transition from typical ferroelectric to relaxor ferroelectric has been observed, which has led to a significantly slimmer ferroelectric loop along with frequency dispersive dielectric properties. The optimized composition (i.e., x = 0.10) exhibits an ultra-high recoverable energy density of 2.68 J/cm3 along with a moderately high energy efficiency of 83.4%. Further, SNO substituted samples have also shown an enhancement in breakdown strength. The improvement in energy storage performance and breakdown strength of SNO substituted BTCZ composites are mainly attributed to relatively homogeneous grain morphology, optimum grain size, microstructural density, and improved grain boundary interface.  相似文献   
2.
《Ceramics International》2021,47(23):32610-32618
AA7075 + 6%B4C+3%ZrC nano hybrid composite was successfully fabricated, with nano reinforcements composition in AA7075 alloy selected based on previous investigation, to achieve better mechanical performance. Two different sintering techniques, namely conventional and microwave, were implemented to determine the effect on microstructural and mechanical properties. Microstructural investigation was performed with the help of W-SEM. Tensile, compression, and hardness were measured with the help of UTM and Vickers microhardness machine. Porosity was calculated by using Archimedes principle. It was observed that the added nano ZrC particles formed agglomerates and the B4C particles were distributed homogenously. Composites processed by microwave sintering showed excellent mechanical properties compared to the conventionally sintered composites. No intermetallic compounds were detected in microwave sintered composites through XRD analysis, indicating strong and clean interface bonds between matrix and reinforcement particles. High strain to fracture value of 12.24% was noted in microwave sintered nano hybrid composite, while it was 6.12% for conventional sintered one. Fractography revealed no peeling action of reinforcements from the matrix material, and the mode of failure was brittle. It was concluded that, while fabricating nano range hybrid composites, the implementation of advanced sintering technique (microwave sintering) with low sintering temperatures and low sintering times with internal heat generations, helps in eliminating defects that may develop because of high surface energies of nano range reinforcements.  相似文献   
3.
4.
In this study, we report highly transparent Y2O3 ceramics fabricated by hot-pressing only at 1500 °C without a HIP treatment, featuring in-line transmittance levels of 77% and 84% at a wavelength of 400 and 1100 nm, respectively with the grain size suppressed to 710 nm. The effect of the ball size during the grinding of Y2O3 powders on the correlation between the thus-prepared Y2O3 powders and the optical properties of the hot-pressed samples is demonstrated for the first time. With a decrease in the diameter of the ZrO2 balls from 5 mm to 1 mm, the milling efficiency was enhanced and admirable transparency of Y2O3 was attained at a short milling time. However, several micron-sized pores remained in the transparent specimens prepared with 1 mm balls, originating from the inhomogeneously packed region of the green body. Finally, the 2 mm was found to be optimum for obtaining a fine-grained and pore-free microstructure with the best in-line transmittance of Y2O3 ceramics.  相似文献   
5.
In this study, the effect of Co addition on microstructural and mechanical properties of WC-B4C–SiC composites sintered by spark plasma sintering (SPS) method was investigated. For this purpose, three batches of WC-B4C–SiC with different contents of Co (10 vol%, 15 vol%, and 20 Vol %) were sintered at 1400 °C. The results of X-ray diffraction (XRD) analysis of the samples indicated the formation of W2B5, W3CoB3 as well as the remained C phases and unreacted SiC phase. It was observed that by increasing the Co content, the amount of W2B5 phase reduces and W3CoB3 and C contents increase. Therefore, W2B5 peaks were not detected in the sample containing 20vol% Co. Relative density values above 97% were obtained for all the composites. However, a decrease was observed in relative density by increasing the Co content in the composites. The highest flexural strength (510 ± 42 MPa), fracture toughness (10.34 ± 0.82 MPa m1/2), and hardness (20.63 ± 0.75 GPa) were also obtained for the sample containing 10vol% Co compared to the other samples. In addition, Transgranular fracture of SiC as well as pulling out of W3CoB3 and W2B5 particles were observed in the fracture surface micrographs of the samples. The presence of micro-cracks in the SiC grains, fracture of W3CoB3 grains, and crack deflection was reported as dominant toughening mechanisms.  相似文献   
6.
Fine-tuning of the scaffolds structural features for bone tissue engineering can be an efficient approach to regulate the specific response of the osteoblasts. Here, we loaded magnetic nanoparticles aka superparamagnetic iron oxide nanoparticles (SPIONs) into 3D composite scaffolds based on biological macromolecules (chitosan, collagen, hyaluronic acid) and calcium phosphates for potential applications in bone regeneration, using a biomimetic approach. We assessed the effects of organic (chitosan/collagen/hyaluronic acid) and inorganic (calcium phosphates, SPIONs) phase over the final features of the magnetic scaffolds (MS). Mechanical properties, magnetic susceptibility and biological fluids retention are strongly dependent on the final composition of MS and within the recommended range for application in bone regeneration. The MS architecture/pore size can be made bespoken through changes of the final organic/inorganic ratio. The scaffolds undertake mild degradation as the presence of inorganic components hinders the enzyme catalytic activity. In vitro studies indicated that osteoblasts (SaOS-2) on MS9 had similar cell behaviour activity in comparison with the TCP control. In vivo data showed an evident development of integration and resorption of the MS composites with low inflammation activity. Current findings suggest that the combination of SPIONs into 3D composite scaffolds can be a promising toolkit for bone regeneration.  相似文献   
7.
《Ceramics International》2021,47(23):32963-32968
Effects of carbon source in single-source ZrC-based liquid precursors on the properties of the precursors and precursor-derived nano ZrC powders were investigated. The liquid precursors were prepared by directly blending and heating zirconium n-butoxide with either 2,4-pentanedione, benzoyl acetone or 1,3-diphenyl-1,3-propanedione additives which have the same chemical composition and structure except for the number of benzene rings (0, 1 and 2, respectively) in order to control the carbon content in the precursors. The ceramic yield of the precursor decreased as the number of benzene rings in the precursors increased. The stability of the precursors in air and the carbon content of the ceramic powder increased when using 1,3-diphenyl-1,3-propanedione additive. X-ray pure nano zirconium carbide powders with ultra-fine size (30 nm), isotropic shape and homogeneous particle size distribution were synthesized from the liquid precursors containing two benzene rings in the structure. Compared with ZrC powders derived from the precursors containing zero or one benzene ring, the powder from the precursor containing two benzene rings was finer and more homogeneous in size distribution.  相似文献   
8.
Voltage reversal induced by hydrogen starvation can severely corrode the anode catalyst support and deteriorate the performance of proton exchange membrane fuel cells. A material-based strategy is the inclusion of an oxygen evolution reaction catalyst (e.g., IrO2) in the anode to promote water electrolysis over harmful carbon corrosion. In this work, an Ir-Pt/C composite catalyst with high metal loading is prepared. The membrane-electrode-assembly (MEA) with 80 wt% Ir-Pt(1:2)/C shows a first reversal time (FRT) of up to 20 hours, which is about ten times that of MEA with 50 wt% Ir-Pt(1:2)/C does. Furthermore, the MEA with 80 wt% Ir-Pt(1:2)/C exhibits a minimum cell voltage loss of 6 mV@1 A/cm2 when the FRT is terminated in 2 hours, in which the MEA with 50 wt% Ir-Pt(1:2)/C exhibits a voltage loss of 105 mV@1 A/cm2. Further physicochemical and electrochemical characterizations demonstrate that the destruction of anode catalyst layer caused by the voltage reversal process is alleviated by the use of the composite catalyst with high metal loading. Hence, our results reveal that the combination of OER catalyst on the Pt/C with high metal loading is a promising approach to alleviate the degradation of anode catalyst layer during the voltage reversal process for PEMFCs.  相似文献   
9.
Methanol crossover is one of the main challenges for direct methanol fuel cells (DMFCs). Depositing a metal barrier on Nafion can reduce the crossover but usually faces the metal cracking issues. This study presents a new composite membrane in which an anodic aluminum oxide (AAO) substrate is impregnated with a Nafion solution and then coated with a layer of Au. The AAO/Nafion/Au composite membrane shows an ideal metal crack-free surface. Higher and more stable voltage has been achieved for the cell with the membrane, indicating an effectively suppressed methanol-crossover. Results reveal that there is a tradeoff between suppressing the methanol crossover and increasing the ion transmission. By optimizing the membrane, it can not only suppress the methanol crossover but also enhance the output performance of DMFCs. The current density and power density of the cells can be enhanced by 59% and 52.85%, respectively, compared to the cell with a commercial Nafion 117. Overall, this work provides a new approach to designing crack-free membranes for DMFCs.  相似文献   
10.
The synthesized novel metal oxides YxCeyRuzO4 (x = 1.5, y = 0.84, z = 0.04) which was produced by the sol-gel method was used as a support for Cu active metal on the surface of a microchannel plate reactor in the methanol steam reforming (MSR) process. The prepared catalysts were characterized by X-ray powder diffraction (XRD), BET surface area analysis (SBET), energy-dispersive X-ray analysis (EDX), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), temperature-programmed desorption (NH3-TPD), and temperature-programmed reduction (H2-TPR). High methanol conversion (99.5%) and H2 selectivity (98.7%) and low CO selectivity (1.4%) were achieved for Cu/YxCeyRuzO4 coated microchannel reactor at 250 °C. FE-SEM images and TGA curve of the spent catalyst displayed no coke formation on the surface of the catalyst after 32 h on stream at 300 °C. The low reduction temperature of Cu, high BET surface area, and high pore volume of the catalyst are considered imperative factors that cause a better dispersion of copper on the Y1.5Ce0.84Ru0.04O4 support.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号