首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31331篇
  免费   3738篇
  国内免费   2100篇
电工技术   13306篇
综合类   2451篇
化学工业   2466篇
金属工艺   2224篇
机械仪表   1483篇
建筑科学   1157篇
矿业工程   641篇
能源动力   959篇
轻工业   641篇
水利工程   739篇
石油天然气   514篇
武器工业   213篇
无线电   4463篇
一般工业技术   2358篇
冶金工业   1010篇
原子能技术   532篇
自动化技术   2012篇
  2024年   67篇
  2023年   426篇
  2022年   616篇
  2021年   854篇
  2020年   909篇
  2019年   774篇
  2018年   757篇
  2017年   1169篇
  2016年   1232篇
  2015年   1383篇
  2014年   1949篇
  2013年   1881篇
  2012年   2323篇
  2011年   2550篇
  2010年   1883篇
  2009年   2129篇
  2008年   2004篇
  2007年   2429篇
  2006年   2093篇
  2005年   1661篇
  2004年   1409篇
  2003年   1110篇
  2002年   915篇
  2001年   817篇
  2000年   739篇
  1999年   572篇
  1998年   430篇
  1997年   374篇
  1996年   326篇
  1995年   269篇
  1994年   229篇
  1993年   167篇
  1992年   147篇
  1991年   108篇
  1990年   77篇
  1989年   93篇
  1988年   57篇
  1987年   40篇
  1986年   28篇
  1985年   43篇
  1984年   43篇
  1983年   31篇
  1982年   30篇
  1981年   8篇
  1980年   5篇
  1979年   3篇
  1977年   2篇
  1974年   1篇
  1962年   1篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The Ag-Pd internal electrode of multilayer piezoelectric ceramics needs to be sintered below 1000°C, and lead wires and components need to be welded with lead-free solder at 260°C. PNN–PMW–PZT–xSr piezoelectric ceramics with high Curie temperature (Tc > 260°C) were synthesized at a low sintering temperature (960°C) to meet the requirements of multilayer piezoelectric devices. The relationship between structures (phase, domain, and microstructures) and electrical properties (piezo/ferroelectric properties, and dielectric relaxation) in the Sr2+ substituted ceramics was investigated. Rietveld refinement and Raman spectra show that Sr2+ substitution can cause the phase change and increase the force constant of [BO6] octahedron. The piezoelectric response increases with increasing the content of the tetragonal phase (CTP) in the rhombohedral-tetragonal (R-T) coexisted ceramics. The ceramics with 0.6 mol% Sr2+ substitution have minimum activation energy for domain wall movement (Ea) of 0.0362 eV which favors the formation of nanometer-sized domains, and possess excellent electrical properties (d33 = 623 pC/N, d33* =783 pm/V, Tc =295°C). The higher the CTP, the lower the Ea. The lower Ea favors the rotation of polarization direction and extension, and is beneficial to the generation of the nanometer-size domains, resulting in high piezoelectric properties.  相似文献   
2.
The morphotropic composition of the lead-free solid solution between Na0.5Bi0.5TiO3 and BaTiO3 (0.94 Na0.5Bi0.5TiO3-0.06 BaTiO3 or NBT-6BT) is of particular interest for the next generation of high-temperature capacitors but remains plagued by the diversity of dielectric properties reported in the literature. In order to explain the apparent inconsistencies among the reported dielectric properties of NBT-6BT, we examine the influence of stoichiometry, phase separation, and metallization method. We show that the nominal stoichiometry has a crucial effect, since increasing the nominal Na/Bi ratio increases conductivity and dielectric losses (tan δ). It also increases the real part of the permittivity (ε’) and the frequency dispersion of both ε’ and tan δ, thereby altering the shape of the evolution with temperature of the dielectric properties. Moreover it increases the depolarization temperature (Td) and decreases the temperature of maximum permittivity (Tm). Phase separation also occurs during the synthesis of NBT-6BT as Na evaporation leads to the formation of secondary Ba-containing phases. We report that these phases can have a positive impact on the dielectric properties: a moderate volume fraction (2.5 to 3.0%) and average grain surface (0.9 to 3.0 µm2) of these secondary Ba-containing phases increase the relative permittivity, decrease the dielectric losses, and increase the insulation resistance. We also show that the metallization method impacts the dielectric properties and therefore may contribute to the differences between various reports. The dielectric properties of NBT-6BT samples are measured during successive heating/cooling cycles and reveal that the permittivity value is lower during the first heating when silver paste, even cured, is used. These three components contribute to explaining the diversity of the reported dielectric properties of NBT-6BT.  相似文献   
3.
4.
Limiting current density at different temperatures, backpressures, and balance gases can be used to separate molecular diffusion resistance, Knudsen diffusion resistance and local transport resistance of membrane electrode assembly (MEA). However, the measurement of limiting current density has no unified protocol. The diverse choices in the literature, either in the control of current or voltage or in the atmosphere like relative humidity and O2 concentrations, make it difficult to compare the results and identify the true bottleneck hindering the mass transport. In this work, the current-voltage curves obtained by current scanning/stepping and voltage scanning/stepping methods under dilute O2 of different concentrations and a wide range of relative humidity were measured and analyzed systematically. It is found that the voltage stepping method is superior to the other three ways of control for the reliable determination of the limiting current density. Aided with simultaneous electrochemical impedance spectroscopy measurement, the limiting current density can be determined with pinpoint accuracy. When the limiting current density is just used to qualitatively evaluate different MEA, the voltage scanning method can be used instead for its high time efficiency. The selection of the atmosphere also plays an important role in suppressing the distortion from excessive water and reducing the spurious contribution from proton conduction resistance. It is found that O2 concentrations at 0.5 vol% and relative humidity at 90% can give the best estimation of O2 transport resistance in membrane electrode assembly.  相似文献   
5.
LiCuNb3O9 has been reported newly a colossal permittivity (CP) perovskite, in which the B-site NbO6 octahedra play a bridging role in the polaron hopping. However, how the A-site modification affects the origin of the polarons and further the CP behaviours remains unexplored. To this end, A-site Ca2+ was incorporated to form Li1-xCaxCuNb3O9, and the local states, dielectric relaxations and conduction behaviours were comprehensively studied. The substitution induces the polyvalent Cu cations, i.e. Cu+/Cu2+/Cu3+. Bond valence sum calculations imply that Cu2+ and Cu3+ are underbonded, and Cu+ is overbonded, while B-site Nb5+ shows slightly different with theoretical pentavalence. All the compositions exhibit a similarly room-temperature CP response, but present two dielectric relaxations, i.e. TR1:170–300 K and TR2:260–400 K. Comprehensive investigations on universal dielectric response and bulk dc conductivity indicate that the TR1 follows the variable-range-hopping where the electron hopping between the mixed Cu+/Cu2+, while TR2 contributes from the Cu3+ nearest neighbor hopping.  相似文献   
6.
Sr-modified Cu/Nb co-doped BaTiO3 ceramics were prepared using solid-state reactions and the structures and dielectric properties were studied. All the samples had single-phase perovskite structures with no detectable secondary phases. In the low-temperature range, the dielectric constant decreased as the Sr content increased in the high- and low-frequency ranges. Two dielectric constant plateaus accompanied by dielectric relaxation peaks were present in the loss curves, and the relaxation process deviated from the Arrhenius law at low temperatures. The dielectric constants of different plateaus were related to inhomogeneous structures such as grain interiors and grain boundaries. The polarization strength of the grain boundaries in the low-frequency range increased with the temperature and that of the grain interiors demonstrated paraelectric behaviour in high-temperature ranges. An analysis of the electric modulus spectra indicated a close relationship between the relaxation process and resistivity of the grains for high-frequency relaxation. The impedance spectra at high temperatures consist of three electrical responses, corresponding to the effects of grains, grain boundaries, and electrodes. The dielectric relaxation appeared in high temperature range was related to the electrical properties of the grain boundaries.  相似文献   
7.
Flash event caused by a DC electric field/current was applied to the crack healing in 8 mol % Y2O3 stabilized cubic ZrO2 polycrystals (8Y-CSZ). The flash event, which occurred by applying the DC power higher than a critical value of 100 mW/mm3, successfully healed the microcrack within several minutes without any healing agents at a furnace temperature of 800 °C. As compared to the healing treatment under static annealing, the healing phenomena were accelerated about 2 times under the flash treatment even at the same temperatures, suggesting that the enhanced healing phenomena cannot be explained only by the temperature effect. Since the rate of grain growth was accelerated under the flash treatment, the flash healing would be accelerated through the current-enhanced diffusional processes. This study shows for the first time that the flash event has a potential to apply to the crack healing process in the ceramic materials and composites.  相似文献   
8.
Water electrolysis is an efficient approach for high-purity hydrogen production. However, the anodic sluggish oxygen evolution reaction (OER) always needs high overpotential and thus brings about superfluous electricity cost of water electrolysis. Therefore, exploiting highly efficient OER electrocatalysts with small overpotential especially at high current density will undoubtedly boost the development of industrial water electrolysis. Herein, we used a simple hydrothermal method to prepare a novel FeOOH–CoS nanocomposite on nickel foam (NF). The as-prepared FeOOH–CoS/NF catalyst displays an excellent OER performance with extremely low overpotentials of 306 and 329 mV at 500 and 1000 mA cm−2 in 1.0 M KOH, respectively. In addition, the FeOOH–CoS/NF catalyst can maintain excellent catalytic stability for more than 50 h, and the OER catalytic activity shows almost no attenuation no matter after 1000 repeated CV cycles or 50 h of stability test. The high catalytic activity and stability have exceeded most non-noble metal electrocatalysts reported in literature, which makes the FeOOH–CoS/NF composite catalyst have promising applications in the industrial water electrolysis.  相似文献   
9.
In the electro-deoxidation process, carbon parasitic reaction (CO32- + 4e-=C + 3O2-) usually occurs when using carbon materials as the anode, which leads to increase of the carbon content in the final metal and decrease of the current efficiency of the process. The aim of this work is to reduce the negative effect of carbon parasitic reaction on the electrolysis process by adjusting anode current density. The results indicate that lower graphite anode area can achieve higher current density, which is helpful to increase the nucleation site of CO2 bubbles. Most of CO2 would be released from the anode instead of dissolution in the molten CaCl2 and reacting with O2- to form CO32-, thus decreasing the carbon parasitic reaction of the process. Furthermore, the results of the compared experiments show that when the anode area decreases from 172.78 to 4.99 cm2, CO2 concentration in the released gases increases significantly, the carbon mass content in the final metal product decreased from 1.09% to 0.13%, and the current efficiency increased from 6.65% to 36.50%. This study determined a suitable anode current density range for reducing carbon parasitic reaction and provides a valuable reference for the selection of the anode in the electrolysis process.  相似文献   
10.
The photoluminescence, dielectric relaxation, ferroelectric hysteresis, and field-induced strain properties of Pr3+-doped 0.24Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PIN-PMN-PT:Pr3+) multifunctional ceramics have been investigated. It was found that Pr3+ doping enhanced the dielectric diffuseness and relaxation behavior of PIN-PMN-PT ceramics. Slim P-E loops and S-E curves appear in PIN-PMN-PT:Pr3+ ceramics when the Pr3+ doping concentration reaches 1.4 mol%. Local domain configurations associated with phase transitions were investigated by piezoresponse force microscopy (PFM). Large electrostrictive coefficient Q33 (?0.03 m4/C2) and high energy-storage efficiency η (92%) were obtained in 2 mol% Pr3+-doped PIN-PMN-PT ceramic in the ergodic relaxor (ER) phase at room temperature. The giant electrostrictive effect and excellent energy-storage performance are related to the field-induced dynamic behavior of polar nanoregions (PNRs). The results show that the PIN-PMN-PT:Pr3+ system is an excellent multifunctional material for making electromechanical and energy storage devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号