首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23739篇
  免费   1253篇
  国内免费   792篇
电工技术   1204篇
综合类   692篇
化学工业   3150篇
金属工艺   2105篇
机械仪表   1996篇
建筑科学   1104篇
矿业工程   1011篇
能源动力   1337篇
轻工业   1249篇
水利工程   137篇
石油天然气   1032篇
武器工业   146篇
无线电   3452篇
一般工业技术   2574篇
冶金工业   919篇
原子能技术   636篇
自动化技术   3040篇
  2024年   16篇
  2023年   245篇
  2022年   401篇
  2021年   573篇
  2020年   523篇
  2019年   468篇
  2018年   544篇
  2017年   626篇
  2016年   663篇
  2015年   748篇
  2014年   1309篇
  2013年   1408篇
  2012年   1324篇
  2011年   1916篇
  2010年   1336篇
  2009年   1313篇
  2008年   1246篇
  2007年   1340篇
  2006年   1369篇
  2005年   1220篇
  2004年   1000篇
  2003年   843篇
  2002年   749篇
  2001年   623篇
  2000年   584篇
  1999年   649篇
  1998年   507篇
  1997年   460篇
  1996年   382篇
  1995年   329篇
  1994年   260篇
  1993年   174篇
  1992年   157篇
  1991年   103篇
  1990年   76篇
  1989年   85篇
  1988年   66篇
  1987年   33篇
  1986年   34篇
  1985年   13篇
  1984年   22篇
  1983年   9篇
  1982年   5篇
  1981年   12篇
  1980年   4篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The applications of antiferroelectric (AFE) materials in miniaturized and integrated electronic devices are limited by their low energy density. To address the above issue, the antiferroelectricity of the reinforced material was designed to improve its AFE-ferroelectric (FE) phase transition under electric fields. In this present study, the composition of Zr4+ (0.72 Å) and Ti4+ (0.605 Å) at B-site of Pb0.97La0.02(ZrxSn0.05Ti0.95-x)O3 ceramics with orthogonal reflections are synthesized via the tape-casting method. These ceramics are modified to enhance their antiferroelectricity by reducing their tolerance factor. A recoverable energy storage density Wrec 12.1 J/cm3 was obtained for x = 0.93 under 376 kV/cm, which is superior value than reported until now in lead-based energy storage systems. Moreover, the discharge energy density can reach 10.23 J/cm3, and 90 % of which can be released within 5.66 μs. This work provides a new window and potential materials for further industrialization of pulse power capacitors.  相似文献   
2.
高熵形状记忆合金是在等原子比NiTi合金的基础上,结合高熵合金的概念,逐渐发展起来的一种新型高温形状记忆合金。近年来,已开发出了综合性能优异的(TiZrHf)50(NiCoCu)50系和(TiZrHf)50(NiCuPd)50系高熵形状记忆合金,引起了广泛的关注和研究兴趣。本文从物相组成、微观组织、马氏体相变行为、形状记忆效应和超弹性等角度出发,综述了高熵形状记忆合金的研究进展,并对高熵形状记忆合金未来的研究重点进行了展望。  相似文献   
3.
Ferrites are materials of interest due to their broad applications in high technological devices and a lot of research has been focused to synthesize new ferrites. In this regard, an effort has been devoted to synthesize spinel Pr–Ni co-substituted strontium ferrites with a nominal formula of Sr1-xPrxFe2-yNiyO4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0). The cubic structure of pure and Pr–Ni co-substituted strontium ferrite samples calcinated at 1073 K for 3 h has been confirmed through X-ray diffraction (XRD). Average sizes of crystallites (18–25 nm) have been estimated from XRD analysis and nanometer particle sizes of synthesized ferrites have been further verified by scanning electron microscopy (SEM). SEM results have also shown that particles are mostly agglomerated and all the samples possess porosity. It has been observed that at 298 K, the values of resistivity (ρ) increase, while that of AC conductivity, dielectric loss, and dielectric constants decrease with increasing amounts of Pr3+ and Ni2+ ions. The values of dielectric parameters initially decrease with frequency and later become constant and can be explained on the basis of dielectric polarization. Electrochemical impedance spectroscopy (EIS) studies show that the charge transport phenomenon in ferrite materials is mainly controlled via grain boundaries. Overall, synthesized ferrite materials own enhanced resistivity values in the range of 1.38 × 109–1.94 × 109 Ω cm and minimum dielectric losses, which makes them suitable candidates for high frequency devices applications.  相似文献   
4.
The mechanical properties of complex concentrated alloys (CCAs) depend on their formed phases and corresponding microstructures.The data-driven prediction of the phase formation and associated mechanical properties is essential to discovering novel CCAs.The present work collects 557 samples of various chemical compositions,comprising 61 amorphous,167 single-phase crystalline,and 329 multi-phases crystalline CCAs.Three classification models are developed with high accuracies to category and understand the formed phases of CCAs.Also,two regression models are constructed to predict the hard-ness and ultimate tensile strength of CCAs,and the correlation coefficient of the random forest regression model is greater than 0.9 for both of two targeted properties.Furthermore,the Shapley additive expla-nation (SHAP) values are calculated,and accordingly four most important features are identified.A significant finding in the SHAP values is that there exists a critical value in each of the top four fea-tures,which provides an easy and fast assessment in the design of improved mechanical properties of CCAs.The present work demonstrates the great potential of machine learning in the design of advanced CCAs.  相似文献   
5.
In this study, monolithic B4C and B4C-based ceramics incorporating FeNiCoCrMo dual-phase (FCC and BCC) high entropy alloys (HEAs) were produced by spark plasma sintering (SPS). The effect of additives on the densification behavior, mechanical properties, microstructures, and phase evaluation of the samples were investigated. X-ray analysis confirmed the existence of FCC structured HEA and depletion of BCC structured HEA, after high-temperature reaction between B4C-HEAs. The addition of HEAs enhanced the densification behavior by liquid phase sintering. Furthermore, hardness and fracture toughness values of the samples increased with increasing HEAs content. Fracture toughness and hardness values for all composites were higher than the monolithic B4C. A combination of the highest density (∼99.22 %) and the best mechanical properties (32.3 GPa hardness and 4.53 MPa m1/2 fracture toughness) was achieved with 2.00 vol.% HEA addition.  相似文献   
6.
Voltage reversal induced by hydrogen starvation can severely corrode the anode catalyst support and deteriorate the performance of proton exchange membrane fuel cells. A material-based strategy is the inclusion of an oxygen evolution reaction catalyst (e.g., IrO2) in the anode to promote water electrolysis over harmful carbon corrosion. In this work, an Ir-Pt/C composite catalyst with high metal loading is prepared. The membrane-electrode-assembly (MEA) with 80 wt% Ir-Pt(1:2)/C shows a first reversal time (FRT) of up to 20 hours, which is about ten times that of MEA with 50 wt% Ir-Pt(1:2)/C does. Furthermore, the MEA with 80 wt% Ir-Pt(1:2)/C exhibits a minimum cell voltage loss of 6 mV@1 A/cm2 when the FRT is terminated in 2 hours, in which the MEA with 50 wt% Ir-Pt(1:2)/C exhibits a voltage loss of 105 mV@1 A/cm2. Further physicochemical and electrochemical characterizations demonstrate that the destruction of anode catalyst layer caused by the voltage reversal process is alleviated by the use of the composite catalyst with high metal loading. Hence, our results reveal that the combination of OER catalyst on the Pt/C with high metal loading is a promising approach to alleviate the degradation of anode catalyst layer during the voltage reversal process for PEMFCs.  相似文献   
7.
A large-scale high-precision scan stage is important equipment in the industrial productions of micro-fabrication such as flat panel display (FPD) lithography systems. Designing controllers for multi-input multi-output (MIMO) systems is time-consuming and needs experience because of the interaction between each axis and many controller tuning parameters. The aim of this study is to develop a peak filter design method based on frequency response data to reduce repetitive disturbance. This data-based approach does not use the model and only uses the frequency response data of the controlled system and the disturbance spectrum calculated from the scanning error data (Contribution 1). The peak filter is designed by convex optimization and satisfies robust stability conditions for six-degree-of-freedom systems (Contribution 2). The control performance of the designed peak filter is experimentally demonstrated with an industrial MIMO large-scale high-precision scan stage in reducing the scanning error of the main stroke of the translation along the x-axis (Contribution 3).  相似文献   
8.
In this work, the solution plasma-assisted method was used to prepare NiMnAl-LDO (layered double oxides) catalysts with different treatment times, which were used for the CO2 methanation reaction. Solution plasma treatment can enhance the dispersibility of the catalyst, create oxygen defects and improve the chemical adsorption capacity of the catalyst. The results show that the low-temperature activity of the catalyst has been improved after the solution plasma treatment. We demonstrate that the NiMnAl-LDO-P(20) catalyst with high dispersion has the highest catalytic activity in CO2 methanation (81.3% CO2 conversion and 96.7% CH4 selectivity at 200 °C). Even though working for 70 h, the catalyst is still highly stable. This work provides a great promise for improving the low-temperature activity of Ni-based catalysts.  相似文献   
9.
Water electrolysis technologies aim to provide a significant increase in green hydrogen production efficiency. In this work, a framework was developed to explore the use of supercritical water for alkaline electrolysis. This framework was used to perform Arrhenius analysis as a function of potential, and to explore activation energies for sub- and supercritical water electrolysis. An analysis of the conductivity of solution unveiled a discontinuity in the trends between sub- and supercritical potassium hydroxide solution conductivity. Unlike prior work on supercritical water electrolysis, this work investigates trends in electrochemical parameters, the sources of these trends, and how they change between the sub- and supercritical regimes.  相似文献   
10.
The effects of high-pressure-modified soy 11S globulin (0.1, 200, and 400 MPa) on the gel properties, water-holding capacity, and water mobility of pork batter were investigated. The high-pressure-modified soy 11S globulin significantly increased (P < 0.05) the emulsion stability, cooking yield, hardness, springiness, chewiness, resilience, cohesiveness, the a* and b* values, and the G′ and G′′ values of pork batter at 80 °C, compared with those of 0.1 MPa-modified globulin. In contrast, the centrifugal loss and initial relaxation time of T2b, T21, and T22 significantly decreased (P < 0.05). Meanwhile, the microstructure was denser, and the voids were smaller and more uniform compared with those of 0.1 MPa-modified globulin. In addition, the sample with 11S globulin modified at 400 MPa had the best water-holding capacity, gel structure, and gel properties among the samples. Overall, the use of high-pressure-modified soy 11S globulin improved the gel properties and water-holding capacity of pork batter, especially under 400 MPa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号