首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56114篇
  免费   6539篇
  国内免费   3088篇
电工技术   13465篇
技术理论   6篇
综合类   5817篇
化学工业   5069篇
金属工艺   1446篇
机械仪表   3195篇
建筑科学   5229篇
矿业工程   1516篇
能源动力   2187篇
轻工业   2019篇
水利工程   2630篇
石油天然气   1881篇
武器工业   661篇
无线电   6465篇
一般工业技术   3738篇
冶金工业   1774篇
原子能技术   507篇
自动化技术   8136篇
  2024年   129篇
  2023年   780篇
  2022年   1434篇
  2021年   1868篇
  2020年   2015篇
  2019年   1585篇
  2018年   1340篇
  2017年   1824篇
  2016年   2128篇
  2015年   2255篇
  2014年   3990篇
  2013年   3312篇
  2012年   4611篇
  2011年   4770篇
  2010年   3531篇
  2009年   3643篇
  2008年   3319篇
  2007年   4057篇
  2006年   3510篇
  2005年   3013篇
  2004年   2461篇
  2003年   2015篇
  2002年   1683篇
  2001年   1419篇
  2000年   1100篇
  1999年   842篇
  1998年   615篇
  1997年   470篇
  1996年   421篇
  1995年   377篇
  1994年   281篇
  1993年   187篇
  1992年   179篇
  1991年   137篇
  1990年   107篇
  1989年   92篇
  1988年   75篇
  1987年   32篇
  1986年   14篇
  1985年   20篇
  1984年   10篇
  1983年   10篇
  1982年   10篇
  1981年   9篇
  1980年   9篇
  1979年   8篇
  1978年   6篇
  1959年   5篇
  1958年   4篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 30 毫秒
1.
Immunotherapy is an efficient approach to clinical oncology. However, the immune privilege of the central nervous system (CNS) limits the application of immunotherapeutic strategies for brain cancers, especially glioblastoma (GBM). Tumor resistance to immune checkpoint inhibitors is a further challenge in immunotherapies. To overcome the immunological tolerance of brain tumors, a novel multifunctional nanoparticle (NP) for highly efficient synergetic immunotherapy is reported. The NP contains an anti-PDL1 antibody (aPDL1), upconverting NPs, and the photosensitizer 5-ALA; the surface of the NP is conjugated with the B1R kinin ligand to facilitate transport across the blood-tumor-barrier. Upon irradiation with a 980 nm laser, 5-ALA is transformed into protoporphyrin IX, generating reactive oxygen species. Photodynamic therapy (PDT) further promotes intratumoral infiltration of cytotoxic T lymphocytes and sensitizes tumors to PDL1 blockade therapy. It is demonstrated that combining PDT and aPDL1 can effectively suppress GBM growth in mouse models. The proposed NPs provide a novel and effective strategy for boosting anti-GBM photoimmunotherapy.  相似文献   
2.
In the present study, 17 wt % TiN reinforced α-β SiAlON composites were sintered at low temperature by susceptor-assisted microwave heating. The effect of TiN addition on dielectrical properties of starting powders, as well as the influence of sintering temperature on phase evolution, microstructure development and mechanical properties of α/β-SiAlON-TiN composites were investigated. The obtained results showed that TiN addition increased the microwave absorbing properties which is reflected in the peak sintering temperature. Thus, the α:β ratio decreased and mechanical properties were improved, especially the fracture toughness of the composites. Furthermore, an estimate of energy consumption during microwave assisted sintering at the laboratory scale is presented. As a result, the highest values for relative density (97.1%), Vickers hardness (13.35 ± 0.47 GPa), and fracture toughness (7.52 ± 0.54 MPa m1/2) were obtained by microwave sintering for 30 min at 1300 °C.  相似文献   
3.
Doxorubicin increases endothelial permeability, hence increasing cardiomyocytes’ exposure to doxorubicin (DOX) and exposing myocytes to more immediate damage. Reactive oxygen species are major effector molecules of doxorubicin’s activity. Mangiferin (MGN) is a xanthone derivative that consists of C-glucosylxanthone with additional antioxidant properties. This particular study assessed the effects of MGN on DOX-induced cytotoxicity in human umbilical vein endothelial cells’ (HUVECs’) signaling networks. Mechanistically, MGN dramatically elevated Nrf2 expression at both the messenger RNA and protein levels through the upregulation of the PI3K/AKT pathway, leading to an increase in Nrf2-downstream genes. Cell apoptosis was assessed with a caspase-3 activity assay, transferase-mediated dUTP-fluorescein nick end labeling (TUNEL) staining was performed to assess DNA fragmentation, and protein expression was determined by Western blot analysis. DOX markedly increased the generation of reactive oxygen species, PARP, caspase-3, and TUNEL-positive cell numbers, but reduced the expression of Bcl-2 and antioxidants’ intracellular concentrations. These were effectively antagonized with MGN (20 μM), which led to HUVECs being protected against DOX-induced apoptosis, partly through the PI3K/AKT-mediated NRF2/HO-1 signaling pathway, which could theoretically protect the vessels from severe DOX toxicity.  相似文献   
4.
Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.  相似文献   
5.
杨乾  范存斐  王毅  任亚琳  毕阳 《食品科学》2021,42(1):243-249
目的:研究抗坏血酸(ascorbic acid,AsA)-还原型谷胱甘肽(reduced glutathione,GSH)循环代谢在水杨酸处理采后甜瓜诱导的过量H2O2清除过程中的作用。方法:用4 mmol/L水杨酸浸泡‘玉金香’厚皮甜瓜10 min,测定处理后果实常温贮藏过程中丙二醛(malondialdehyde,MDA)含量,分析活性氧的积累水平、超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)活力,以及AsA-GSH循环过程相关酶活力及产物和底物含量。结果:水杨酸处理降低了果实MDA含量,第10天处理组MDA含量较对照组降低14.6%;显著提高了果实O2-·的产生速率和H2O2含量(P<0.05),其中处理后第2天O2-·的产生速率高出同期对照组的1.9 倍,第6天H2O2含量高出对照组果实29.7%;提高了果实SOD活力,但抑制了CAT活力,说明H2O2的清除可能是依赖于除酶促系统外的其他系统。此外,水杨酸处理提高了果实抗坏血酸过氧化物酶、单脱氢抗坏血酸过氧化物酶、脱氢抗坏血酸还原酶和谷胱甘肽还原酶的活力,增加了AsA和氧化型谷胱甘肽的含量,降低了脱氢抗坏血酸和GSH的含量。结论:水杨酸处理诱导了厚皮甜瓜果实的氧爆,抑制了MDA产生,由水杨酸诱导产生的过量H2O2主要依靠AsA-GSH循环系统清除。  相似文献   
6.
针对致密砂岩油藏大规模体积压裂开发后能量补充困难的问题,利用自主设计制作的大型人造三维岩心物理模型和物理模拟实验舱,开展致密砂岩油藏能量补充方式优化研究。实验结果表明:致密砂岩油藏压裂开发过程中,地层能量损耗严重,采取注水或注气的方式可有效进行能量补充;地层中裂缝规模越大,越有利于原油渗流,后续补充能量的传播范围越广,有助于进一步提高原油采收率;从提高驱油效率和扩大波及系数方面优选吞吐渗吸介质,CO2均优于活性水,CO2吞吐开发在矿场试验中取得了显著的增油效果,因此,CO2吞吐作为一种有效的能量补充方式在致密油开发中展现了良好的应用前景。该文分析了致密砂岩储层水平井压裂开发的渗流规律,优选出致密砂岩储层大规模压裂开发后最佳渗吸介质,可为致密砂岩油藏开发设计提供重要的理论依据。  相似文献   
7.
Titanium dioxide (TiO2) nanopowder (P-25;Degussa AG) was treated using dielectric barrier discharge (DBD) in a rotary electrode DBD (RE-DBD) reactor.Its electrical and optical characteristics were investigated during RE-DBD generation.The treated TiO2 nanopowder properties and structures were analyzed using x-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR).After RE-DBD treatment,XRD measurements indicated that the anatase peak theta positions shifted from 25.3° to 25.1°,which can be attributed to the substitution of new functional groups in the TiO2 lattice.The FTIR results show that hydroxyl groups (OH) at 3400 cm-1 increased considerably.The mechanism used to modify the TiO2 nanopowder surface by air DBD treatment was confirmed from optical emission spectrum measurements.Reactive species,such as OH radical,ozone and atomic oxygen can play key roles in hydroxyl formation on the TiO2 nanopowder surface.  相似文献   
8.
Treating neuroinflammation-related injuries and disorders through manipulation of neuroinflammation functions is being heralded as a new therapeutic strategy. In this study, a novel pectic galactan (PG) polysaccharide based gene therapy approach is developed for targeting reactive gliosis in neuroinflammation. Galectin-3 (Gal-3) is a cell protein with a high affinity to β-galactoside sugars and is highly expressed in reactive gliosis. Since PG carries galactans, it can target reactive gliosis via specific carbohydrate interaction between galactan and Gal-3 on the cell membrane, and therefore can be utilized as a carrier for delivering genes to these cells. The carrier is synthesized by modifying quaternary ammonium groups on the PG. The resulting quaternized PG (QPG) is found to form complexes with plasmid DNA with a mean diameter of 100 nm and have the characteristics required for targeted gene therapy. The complexes efficiently condense large amounts of plasmid per particle and successfully bind to Gal-3. The in vivo study shows that the complexes are biocompatible and safe for administration and can selectively transfect reactive glial cells of an induced cortical lesion. The results confirm that this PG-based delivery system is a promising platform for targeting Gal-3 overexpressing neuroinflammation cells for treating neuroinflammation-related injuries and neurodegenerative diseases.  相似文献   
9.
Membrane electrode assembly (MEA) is considered a key component of a proton exchange membrane fuel cell (PEMFC). However, developing a new MEA to meet desired properties, such as operation under low-humidity conditions without a humidifier, is a time- and cost-consuming process. This study employs a machine-learning-based approach using K-nearest neighbor (KNN) and neural networks (NN) in the MEA development process by identifying a suitable catalyst layer (CL) recipe in MEA. Minimum redundancy maximum relevance and principal component analysis were implemented to specify the most important predictor and reduce the data dimension. The number of predictors was found to play an essential role in the accuracy of the KNN and NN models although the predictors have self-correlations. The KNN model with a K of 7 was found to minimize the model loss with a loss of 11.9%. The NN model constructed by three corresponding hidden layers with nine, eight, and nine nodes can achieve the lowest error of 0.1293 for the Pt catalyst and 0.031 for PVA as a good additive blending in the CL of the MEA. However, even if the error is low, the prediction of PVA seems to be inaccurate, regardless of the model structure. Therefore, the KNN model is more appropriate for CL recipe prediction.  相似文献   
10.
The utilization of renewable gaseous fuels in the diesel engine has gained significant interest in recent years due to its clean-burning nature and higher availability. In this study, hydrogen-rich reformed biogas was used as a gaseous fuel in a common rail diesel engine with diesel as pilot fuel. The hydrogen-rich reformed gas was synthesized through dry-oxidative reforming. The experimentations were performed in the load range from 6 to 24 N m with two different flow rates of gaseous fuel (0.5 and 1.5 kg/h) at a constant speed of 1800 RPM. The effects on engine performance parameters (brake thermal efficiency, brake specific energy consumption, and brake specific diesel consumption), combustion parameters (rate of pressure rise and maximum heat release rate) and emission parameters (Unburnt hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide) were assessed. The induction of gaseous fuel led to an increase in brake thermal efficiency by 10.5%, reduction in brake specific energy consumption by 13.6%, and a reduction of 26.4% in brake specific diesel consumption with a flow rate of 0.5 kg/h when compared to diesel-only mode at 24 N m load. The HC, NOX and CO2 emissions were reduced by 18.2%, 7.4% and 1.4% with a flow rate of 0.5 kg/h when compared to diesel-only mode at 24 N m load due to lower availability of carbon content in the combustible mixture. The utilization of renewable fuel like hydrogen-rich reformed biogas has great potential for overcoming the issue related to both biogas and hydrogen in diesel engines. Moreover, the higher diesel substitution also demonstrates the potential for cost-saving and fossil fuel conservation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号