首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26776篇
  免费   1936篇
  国内免费   1900篇
电工技术   526篇
技术理论   1篇
综合类   1142篇
化学工业   7738篇
金属工艺   7686篇
机械仪表   1373篇
建筑科学   1051篇
矿业工程   332篇
能源动力   572篇
轻工业   1382篇
水利工程   64篇
石油天然气   540篇
武器工业   266篇
无线电   1327篇
一般工业技术   5131篇
冶金工业   1173篇
原子能技术   179篇
自动化技术   129篇
  2024年   86篇
  2023年   614篇
  2022年   867篇
  2021年   949篇
  2020年   851篇
  2019年   841篇
  2018年   849篇
  2017年   1036篇
  2016年   900篇
  2015年   861篇
  2014年   1289篇
  2013年   1372篇
  2012年   1680篇
  2011年   2025篇
  2010年   1561篇
  2009年   1611篇
  2008年   1310篇
  2007年   1684篇
  2006年   1679篇
  2005年   1366篇
  2004年   1210篇
  2003年   972篇
  2002年   916篇
  2001年   770篇
  2000年   679篇
  1999年   505篇
  1998年   432篇
  1997年   329篇
  1996年   317篇
  1995年   261篇
  1994年   205篇
  1993年   173篇
  1992年   152篇
  1991年   77篇
  1990年   54篇
  1989年   58篇
  1988年   21篇
  1987年   4篇
  1986年   16篇
  1985年   3篇
  1984年   4篇
  1983年   6篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1959年   4篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(11):15268-15273
SiC/SiC mini-composites reinforced with SiC fibers coated with different numbers of ZrSiO4 sublayers prepared via a non-hydrolytic sol-gel process were fabricated. The tensile strength and work of fracture of the prepared SiC/SiC mini-composites were determined, and the relationship between their mechanical properties and fracture morphologies was discussed. The toughening mechanism and the variation tendency of their mechanical properties were further elaborated by analyzing the interfacial debonding morphologies of the SiC/SiC mini-composites with 1 and 4 layers of ZrSiO4 interphase as well as the results of prior studies. A relatively rare phenomenon—the delamination of the multilayer ZrSiO4 interphase in the SiC/SiC mini-composites but not on the SiC fibers—was observed, which clearly demonstrated the weak bonding between the ZrSiO4 sublayers in the SiC/SiC mini-composites. The ZrSiO4 sublayer delamination mechanism was then explained based on the high-magnification morphologies found in and beside the ZrSiO4 interphase.  相似文献   
2.
《Ceramics International》2022,48(17):24592-24598
Single-phase Al4SiC4 powder with a low neutron absorption cross section was synthesized and mixed with SiC powder to fabricate highly densified SiC ceramics by hot pressing. The densification of SiC ceramics was greatly improved by the decomposition of Al4SiC4 and the formation of aluminosilicate liquid phase during the sintering process. The resulting SiC ceramics were composed of fine equiaxed grains with an average grain size of 2.0 μm and exhibited excellent mechanical properties in terms of a high flexure strength of 593 ± 55 MPa and a fracture toughness of 6.9 ± 0.2 MPa m1/2. Furthermore, the ion-irradiation damage in SiC ceramics was investigated by irradiating with 1.2 MeV Si5+ ions at 650 °C using a fluence of 1.1 × 1016 ions/cm2, which corresponds to 6.3 displacements per atom (dpa). The evolution of the microstructure was investigated by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The breaking of Si–C bonds and the segregation of C elements on the irradiated surface was revealed by XPS, whereas the formation of Si–Si and C–C homonuclear bonds within the Si–C network of SiC grains was detected by Raman spectroscopy.  相似文献   
3.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
4.
《Ceramics International》2022,48(5):6302-6312
In this study we synthesized Li-rich Li1.2Ni0.13Mn0.54Co0.13O2 (LMNCO) as a composite cathode material through a two-step spray-drying method, using transition metal (TM) acetates and citric acid (CA, as a chelating agent) at various molar ratios and then calcining at various temperatures for various periods of time. This two-step spray-drying method created hierarchical nano/micro-sphere structures of the LMNCO cathode material. The LMNCO cathode exhibited the best electrochemical performance when synthesized with a TM:CA ratio of 3:2, a calcination temperature of 900 °C, and a calcination time of 5 h. This as-prepared LMNCO composite was then modified with polyimide (PI) at various weight ratios (PI/LMNCO = 0.5, 1.0, and 1.5 wt%) to improve its electrochemical properties. Among the various structures, the LMNCO cathode material coated with 1.0 wt% of PI at a layer thickness of approximately 1.88 nm achieved the best initial discharge capacities. This modified electrode also displayed enhanced cycle stability, with over 93.3 and 87.9% of the capacity retained after 30 cycles at 0.1C and 100 cycles at 1C, respectively. In comparison, the capacity retention of the unmodified LMNCO electrode measured under the same conditions was no more than 91.3% at 0.1C and 70.1% at 1C. Thus, surface modification with PI was an effective method for improving the coulombic efficiency, discharge capacity, and long-term cycling performance of the LMNCO cathode. Such PI-coated LMNCO composite cathode materials appear to be potential candidates for use in next-generation high-performance lithium-ion batteries.  相似文献   
5.
A conducting and anticorrosive coating is crucial for the application of metal bipolar plates (BP) in proton exchange membrane fuel cell (PEMFC). In this work, a Ti3C2Tx (T)-carbon black (C)-acrylic epoxy (AE) coating is prepared on 304 stainless steel (SS) with enhanced corrosion resistance and conductivity. The corrosion resistance of the T-C-AE coating is investigated in a 0.5 M H2SO4 solution as compared to the AE, T, and T-AE coatings. The T-C-AE coated 304SS exhibits the strongest corrosion resistance with the most positive corrosion potential and the lowest corrosion current density of 0.00673 μA cm?2 in all the samples, while retaining intact and compact surface morphology with the lowest metal ion dissolution even after immersed for 720 h. The addition of Ti3C2Tx and carbon black into the AE matrix greatly decreases interfacial contact resistance (ICR), and the T-C-AE coating achieves a low ICR of 15.5 mΩ cm?2 under 140 N cm?2 compaction force. The excellent anticorrosion performance is mainly attributed to the physical barrier and the cathodic protection provided by the stacked Ti3C2Tx (MXene) nanosheets in the T-C-AE coating. This eco-friendly, conducting, and anticorrosive T-C-AE coating has a good application prospect on SS BP of PEMFC.  相似文献   
6.
In this present work, the effect of lanthanum oxides (La2O3) on the thermal cycle behavior of TBC coatings and mechanical properties such as adhesion strength and microhardness of 8% Yttria Stabilized Zirconia (8YSZ) TBCs were investigated. CoNiCrAlY and aluminium alloy (Al–13%Si) were used as bond coat and substrate materials. 8YSZ and different wt % of La2O3 (10, 20, and 30%) top coatings were applied using the atmospheric plasma spray (APS) method. The thermal cycling test for TBC coated samples were conducted at 800 °C in the electric furnace. The XRD pattern shows that the La2O3 doped 8YSZ material transformed to cubic pyrochloric structured La2Zr2O7 during thermal cycling. Further, the Taguchi-based grey relation analysis (GRA) method was applied to optimize the TBC coating parameters to achieve better mechanical properties such as adhesion strength and microhardness. And the optimized La2O3/8YSZ TBC coating was coated on CRDI engine combustion chamber components. The engine was tested with microalgae biodiesel and hydrogen, and the results were promising for the TBC-coated engine. The engine performance increased while using La2O3/8YSZ coated components, and the emissions from engine exhaust gas such as CO, HC, and smoke reduced considerably. It was found that there was no separation crack and spallation of the coating layer in the microstructure. Ultimately, the microstructural analysis of the optimized TBC coated piston sample after 50 h of running in the diesel engine confirmed that the developed coating had a superior thermal insulation effect and longer life.  相似文献   
7.
《Ceramics International》2022,48(20):29959-29966
High-purity SiC ceramic devices are applied in semiconductor industry owing to their outstanding properties. Nevertheless, it is difficult to densify SiC ceramics without any sintering additive even by HP sintering. In this work, high-purity and dense SiC ceramics were fabricated by HP sintering with very low amounts of sintering aids. Residual B content was only 556 ppm and relative density was more than 99.5%. Furthermore, thermal conductivity of as-prepared SiC ceramics was improved from 155 W m?1 K?1 to 167 W m?1 K?1 by increasing holding time and their plasma corrosion resistance was promoted in the meantime. The as-prepared high-purity SiC ceramics have broad application prospects in the field of semiconductor industry.  相似文献   
8.
A series of 3 C-SiC coatings were prepared by organometallic chemical vapor deposition (MOCVD) using precursor solution containing a varying proportion of commercial-grade hexamethyldisiloxane (HMDSO) and n-hexane. The phase composition, bonding state, and microstructure of 3 C-SiC coatings were studied in detail by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The microstructure and mechanical properties of the optimal 3 C-SiC coating were characterized by scanning transmission electron microscopy (STEM) and nanoindentation, respectively. Our results revealed that the amount of undesired graphite phase can be significantly reduced in the 3 C-SiC coating by introducing hydrogen gas in the reaction chamber alongside increasing the ratio of HMDSO/n-hexane in the precursor mixture. The STEM results revealed that the optimal coating was predominantly composed of nano-crystalline 3 C-SiC grains alongside a small amount of amorphous graphite. The hardness and elastic modulus of the optimal coating were 38.19 GPa and 363.2 GPa, respectively.  相似文献   
9.
《Ceramics International》2022,48(6):7885-7896
Al2O3 and honeycomb skeleton-Al2O3 composite coatings on Titanium alloy (Ti–6Al–4V) were prepared by atmospheric plasma spraying. A laser ablation experiment on as-sprayed coatings was performed. In this paper, the laser damage resistance, microstructure, phase composition of Al2O3 coatings were examined. 3D Dimensional Confocal Microscopy, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Energy Dispersive Spectrometry (EDS) characterized the laser damage morphology, microstructure, phase composition, and element analysis, respectively. The influence of the honeycomb skeleton on the laser ablation damage on as-sprayed coatings was investigated by a comparative analysis of the laser damage morphology with different laser ablation times and gas flow. The results show that the honeycomb skeleton raises thermal conductivity and thermal diffusivity. Moreover, a “tower”-like dendrite was generated during the laser irradiation of the composite coating. The honeycomb skeleton refined the structure, suppressed crack propagation, and reduced the influence of gas flow on cracks. Under the same experimental laser ablation parameters, the laser damage area of the honeycomb skeleton-Al2O3 composite coating was smaller than that of the Al2O3 coating. It was demonstrated that the laser damage resistance of the honeycomb skeleton-Al2O3 composite coating was superior to that of the Al2O3 coating.  相似文献   
10.
《Ceramics International》2022,48(13):18238-18245
Zinc oxide nanorods, ZnO NRs, were synthesized on a clean glass and coated with graphene oxide (GO) using spray coating method to enhance the photocatalytic activity in wastewater treatment. The ZnO NRs were synthesized using the solution process synthesis that was optimized using Taguchi method. Several synthesis parameters have been optimized and studied to determine the best synthesis parameter to grow ZnO NRs for the photodegradation of organic contaminants. Field emission scanning electron microscopy (FESEM) with EDX, X-ray diffraction (XRD), Raman, ultraviolet visible near-infrared (UV-VIS-NIR), and photoluminescence (PL) spectroscopies were used to investigate the structural and optical properties of the produced nanorods. FESEM images revealed the vertical growth of ZnO NRs as well as layers of GO covering the ZnO NRs' top surface. The Raman study demonstrates the combination peak of GO and ZnO, hence proving the GO layer's successful coating. After the GO coating, decrease in the bandgap of the synthesized photocatalyst was detected by PL and UV–Vis absorption measurements. Under UVC exposure with treatment time of 6 h, the degradation of MB with ZnO NRs/GO photocatalyst reached a degradation percentage of 97.86%, which is greater than the degradation percentage achieved using pristine ZnO NRs, which is 93.28%. The results validated that the coating of GO enhances the photocatalytic activity of the host material, ZnO NRs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号