首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17882篇
  免费   1677篇
  国内免费   1175篇
电工技术   421篇
综合类   812篇
化学工业   3348篇
金属工艺   2107篇
机械仪表   2907篇
建筑科学   248篇
矿业工程   159篇
能源动力   348篇
轻工业   892篇
水利工程   64篇
石油天然气   282篇
武器工业   113篇
无线电   3331篇
一般工业技术   3866篇
冶金工业   459篇
原子能技术   872篇
自动化技术   505篇
  2024年   28篇
  2023年   303篇
  2022年   364篇
  2021年   533篇
  2020年   528篇
  2019年   546篇
  2018年   493篇
  2017年   637篇
  2016年   616篇
  2015年   596篇
  2014年   757篇
  2013年   1070篇
  2012年   1037篇
  2011年   1406篇
  2010年   968篇
  2009年   999篇
  2008年   1044篇
  2007年   1042篇
  2006年   979篇
  2005年   844篇
  2004年   749篇
  2003年   708篇
  2002年   603篇
  2001年   419篇
  2000年   389篇
  1999年   368篇
  1998年   306篇
  1997年   311篇
  1996年   300篇
  1995年   245篇
  1994年   193篇
  1993年   180篇
  1992年   179篇
  1991年   153篇
  1990年   137篇
  1989年   126篇
  1988年   88篇
  1987年   79篇
  1986年   78篇
  1985年   73篇
  1984年   91篇
  1983年   58篇
  1982年   65篇
  1981年   10篇
  1980年   5篇
  1979年   7篇
  1977年   4篇
  1976年   6篇
  1975年   3篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Compositional analysis of boron carbide on nanometer length scales to examine or interpret atomic mechanisms, for example, solid-state amorphization or grain-boundary segregation, is challenging. This work reviews advancements in high-resolution microanalysis to characterize multiple generations of boron carbide. First, ζ-factor microanalysis will be introduced as a powerful (scanning) transmission electron microscopy ((S)TEM) analytical framework to accurately characterize boron carbide. Three case studies involving the application of ζ-factor microanalysis will then be presented: (1) accurate stoichiometry determination of B-doped boron carbide using ζ-factor microanalysis and electron energy loss spectroscopy, (2) normalized quantification of silicon grain-boundary segregation in Si-doped boron carbide, and (3) calibration of a scanning electron microscope X-ray energy-dispersive spectroscopy (XEDS) system to measure compositional homogeneity differences of B/Si-doped arc-melted boron carbides in the as-melted and annealed conditions. Overall, the improvement and application of advanced analytical tools have helped better understand processing–microstructure–property relationships and successfully manufacture high-performance ceramics.  相似文献   
2.
Photocatalytic water splitting has become a promising technology to solve environmental pollution and energy shortage. Exploring stable and efficient photocatalysts are highly desired. Herein, we propose novel low-dimensional InSbS3 semiconductors with good stability based on density functional theory. Such InSbS3 structures could be obtained from their bulk crystal by suitable exfoliation methods. Our calculations indicate that two-dimensional (2D) and one-dimensional (1D) InSbS3 nanostructures have moderate band gaps (2.54 and 1.97 eV, respectively) and suitable band edge alignments, which represents sufficient redox capacity for photocatalytic water splitting. 2D InSbS3 monolayer possesses oxygen evolution reaction (OER) activity and 1D InSbS3 single-nanochain possesses hydrogen evolution reaction (HER) activity under acidic conditions. Interestingly, two edge electron states can be introduced when the dimension of InSbS3 is reduced from 2D to 1D and the new electron states can exist in arbitrary-width nanoribbons, which can effectively promote the process of HER. Moreover, InSbS3 monolayer and single-nanochain also exhibit large solar-to-hydrogen efficiency, high carrier mobility, and excellent optical absorption properties, which can facilitate the process of photocatalytic reactions. Our findings can stimulate the synthesis and applications of low-dimensional InSbS3 semiconductors for overall water splitting.  相似文献   
3.
Several results based on the Langmuir probes' data on the HL-2A tokamak are presented. The blob structures' radial and poloidal drift velocities, estimated by the gradient of floating potential and by time delay evaluation, are compared in different line-averaged density and electron cyclotron resonance heating conditions. A positive correlation is observed in the comparison between blobs' radial velocity estimated by the two methods mentioned above, regardless of the situation differences mentioned above. Correlation is also observed in the comparison between the blobs' poloidal velocity estimated by the two methods in different situations, while a shift due to the different line-averaged density is observed. These results imply that the radial gradient of floating potential may have some value as a reference during data analysis in low-parameter discharge.  相似文献   
4.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   
5.
Cytochrome P450s are heme-thiolate enzymes that participate in carbon source assimilation, natural compound biosynthesis and xenobiotic metabolism in all kingdoms of life. P450s can catalyze various reactions by using a wide range of organic compounds, thus exhibiting great potential in biotechnological applications. The catalytic reactions of P450s are driven by electron equivalents that are sourced from pyridine nucleotides and delivered by cognate or matching redox partners (RPs). The electron transfer (ET) route from RPs to P450s involves one or more redox center-containing domains. As the rate of ET is one of the main determinants of P450 efficacy, an in-depth understanding of the P450 ET pathway should increase our knowledge of these important enzymes and benefit their further applications. Here, the various P450 RP systems along with current understanding of their ET routes will be reviewed. Notably, state-of-the-art structural studies of the two main types of self-sufficient P450 will also be summarized.  相似文献   
6.
The phase shift characteristics reflect the state change of electromagnetic wave in plasma sheath and can be used to reveal deeply the action mechanism between electromagnetic wave and plasma sheath. In this paper, the phase shift characteristics of electromagnetic wave propagation in plasma were investigated. Firstly, the impact factors of phase shift including electron density,collision frequency and incident frequency were discussed. Then, the plasma with different electron density distribution profiles were employed to investigate the influence on the phase shift characteristics. In a real case, the plasma sheath around the hypersonic vehicle will affect and even break down the communication. Based on the hypersonic vehicle model, we studied the electromagnetic wave phase shift under different flight altitude, speed, and attack angle. The results indicate that the phase shift is inversely proportional to the flight altitude and positively proportional to the flight speed and attack angle. Our work provides a theoretical guidance for the further research of phase shift characteristics and parameters inversion in plasma.  相似文献   
7.
In this study, in situ transmission electron microscopy is performed to study the interaction between single (monomer) and paired (dimer) Sn atoms at graphene edges. The results reveal that a single Sn atom can catalyze both the growth and etching of graphene by the addition and removal of C atoms respectively. Additionally, the frequencies of the energetically favorable configurations of an Sn atom at a graphene edge, calculated using density functional theory calculations, are compared with experimental observations and are found to be in good agreement. The remarkable dynamic processes of binary atoms (dimers) are also investigated and is the first such study to the best of the knowledge. Dimer diffusion along the graphene edges depends on the graphene edge termination. Atom pairs (dimers) involving an armchair configuration tend to diffuse with a synchronized shuffling (step-wise shift) action, while dimer diffusion at zigzag edge terminations show a strong propensity to collapse the dimer with each atom diffusing in opposite directions (monomer formation). Moreover, the data reveals the role of C feedstock availability on the choice a single Sn atom makes in terms of graphene growth or etching. This study advances the understanding single atom catalytic activity at graphene edges.  相似文献   
8.
Secondary metabolites are structurally diverse natural products (NPs) and have been widely used for medical applications. Developing new tools to enrich NPs can be a promising solution to isolate novel NPs from the native and complex samples. Here, we developed native and deuterated chemoselective labeling probes to target phenol-containing glycopeptides by the ene-type labeling used in proteomic research. The clickable azido-linker was included for further biotin functionalization to facilitate the enrichment of labeled substrates. Afterward, our chemoselective method, in conjunction with LC-MS and MSn analysis, was demonstrated in bacterial cultures. A vancomycin-related phenol-containing glycopeptide was labeled and characterized by our labeling strategy, showing its potential in glycopeptide discovery in complex environments.  相似文献   
9.
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.  相似文献   
10.
《Ceramics International》2022,48(11):15124-15135
Phase equilibria of the PbO-“FeO”-SiO2-ZnO, PbO-“FeO”-SiO2-Al2O3 and PbO-“FeO”-SiO2-MgO slags with liquid Pb metal, solid or liquid Fe metal and solid oxides (cristobalite and tridymite SiO2, willemite (Zn,Fe)2SiO4, wustite (Fe,Al)O1+x, spinel (Fe,Al)3O4, olivine Fe2SiO4, corundum (Al,Fe)2O3, mullite Al6Si2O13 and pyroxene (Mg,Fe)SiO3) were investigated at 1125–1670 °C. These conditions correspond to the minimum solubility of PbO in slag in presence of Pb and Fe metals at reducing conditions and represent the limit of lead smelting and slag cleaning process. High-temperature equilibration on silica, corundum or iron foil substrates, followed by quenching and direct measurement of Pb, Fe, Si, Zn, Al and Mg concentrations in the liquid and solid phases with the electron probe X-ray microanalysis (EPMA) was used. Present data can be used to improve the thermodynamic models for all phases in this system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号