首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19840篇
  免费   1874篇
  国内免费   927篇
电工技术   636篇
综合类   1283篇
化学工业   6373篇
金属工艺   1712篇
机械仪表   540篇
建筑科学   144篇
矿业工程   432篇
能源动力   222篇
轻工业   2362篇
水利工程   23篇
石油天然气   285篇
武器工业   128篇
无线电   2431篇
一般工业技术   2566篇
冶金工业   2843篇
原子能技术   140篇
自动化技术   521篇
  2024年   36篇
  2023年   542篇
  2022年   660篇
  2021年   687篇
  2020年   775篇
  2019年   674篇
  2018年   629篇
  2017年   802篇
  2016年   709篇
  2015年   649篇
  2014年   1018篇
  2013年   1022篇
  2012年   1395篇
  2011年   1472篇
  2010年   1071篇
  2009年   1198篇
  2008年   898篇
  2007年   1354篇
  2006年   1207篇
  2005年   1007篇
  2004年   862篇
  2003年   782篇
  2002年   595篇
  2001年   499篇
  2000年   436篇
  1999年   347篇
  1998年   234篇
  1997年   190篇
  1996年   160篇
  1995年   152篇
  1994年   110篇
  1993年   76篇
  1992年   92篇
  1991年   86篇
  1990年   83篇
  1989年   72篇
  1988年   15篇
  1987年   5篇
  1986年   9篇
  1985年   7篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1981年   8篇
  1980年   2篇
  1978年   1篇
  1974年   1篇
排序方式: 共有10000条查询结果,搜索用时 598 毫秒
1.
In this work we have investigated the effect of the solvent during the processing of SrFe12O19 platelet-based permanent magnets by cold sintering process (CSP) plus a post-thermal treatment. Several organic solvents: glacial acetic acid, oleic acid and oleylamine have been analyzed, optimizing the CSP temperatures at 190?270 °C, under pressures of 375?670 MPa and 6?50 wt% of solvent. Modifications in the morphological and structural properties are identified depending on the solvent, which impacts on the magnetic response. Independently of the solvent, the mechanical integrity of ferrite magnets obtained by CSP is improved by a post-annealing at 1100 °C for 2 h, resulting in relative densities around 92 % with an average grain size of 1 μm and a fraction of SrFe12O19 phase >91 %. HC ≥ 2.1 kOe and MS of 73 emu/g are obtained in the final sintered ceramic magnets, exhibiting the highest HC value of 2.8 kOe for the magnet sintered using glacial acetic acid.  相似文献   
2.
《Ceramics International》2022,48(9):12118-12125
In this study, (Cu1/3Nb2/3)4+ complex cation and BaO–ZnO–B2O3 glass frit were adopted to solve the high sintering temperature and poor temperature stability of Ba3Nb4Ti4O21 ceramics. It is shown that pure Ba3Nb4Ti4O21 phase was formed when Ti site was partially replaced by (Cu1/3Nb2/3)4+ cation. The increasing number of dopants decreases the dielectric polarizability, correspondingly, the dielectric constant and temperature coefficient of the resonance frequency values are reduced consistently. The variation of the Q × f value is determined by internal ionic packing fraction and external sintering densification. The (Cu1/3Nb2/3)4+ cation effectively decreases the suitable sintering temperature from 1200 to 1050 °C while greatly improving the temperature stability. BaO–ZnO–B2O3 glass was used to further improve the low-temperature sintering characteristics of Ba3Nb4Ti4O21 ceramics. It is proven that the addition of glass frits effectively decreases the temperature to 925 °C with combinational excellent microwave dielectric properties: εr ~55.6, Q × f ~5700 GHz, τf ~3 ppm/°C, making the Ba3Nb4Ti4O21 ceramics promising in the applications of low-temperature cofired ceramic technology.  相似文献   
3.
The present work was conducted to illustrate the mechanism of gel formation of myofibrillar proteins (MPs) under different microwave heating times. The results showed that the denaturation enthalpy (ΔH) of the MPs significantly decreased when the heating time increased from 3 to 9 s and then completely disappeared as the heating time progressed, indicating that the MPs gradually denatured and subsequently aggregated with increasing heating time, which was further verified by the changes in the secondary structure, electrophoretic bands, and gel properties (e.g., water holding capacity and textural profiles) of the MPs. Microstructural images indicated that the MP gel formed under 12 s had the most compact network, indicating that extended microwave heating time could induce quality deterioration of MP gels. Moreover, the hydrophobic forces, electrostatic forces, and disulphide bonds of the MPs gradually intensified with increasing microwave heating time, suggesting that both non-covalent and covalent bonds could promote molecular denaturation and subsequent aggregation of MPs. In addition, correlation analysis revealed that the changes in the molecular conformation of MPs induced by different microwave heating times could effectively regulate the formation of MP gels and their related properties.  相似文献   
4.
SrF2 transparent ceramic is a promising upconversion material due to the low phonon energy. The effect of different sintering temperatures on Er:SrF2 transparent ceramics was investigated. The suitable sintering temperature for Er:SrF2 transparent ceramics was 900 °C by hot-pressed sintering in this study. High quality of Er:SrF2 transparent ceramics with different doping concentrations were obtained. The upconversion luminescence spectra and decay behavior were compared between Er:SrF2 and Er:CaF2 transparent ceramics with different Er3+ doping concentration. The green emission of 5 at.% Er:SrF2 ceramic was much stronger than that of 5 at.% Er:CaF2 ceramic, while the red emission of Er:SrF2 ceramic was almost the same as that of Er:CaF2 ceramic. The upconversion luminescence lifetime of Er:SrF2 transparent ceramics was longer than that of Er:CaF2.All the results indicated Er:SrF2 transparent ceramics was a candidate for green fluorescent upconversion materials.  相似文献   
5.
The state-of-the-art protonic ceramic conductor BaZr0.8Y0.2O3-δ (BZY20) requires an extremely high sintering temperature (≥1700 °C) to achieve the desired relative density and microstructure necessary to function as a proton conducting electrolyte. In this work, we developed a cold sintering pretreatment assisted moderate-temperature sintering method for the fabrication of high-quality pure BZY20 pellets. BZY20 pellets with high relative density of ~94% were fabricated with a final sintering temperature of 1500 °C (200 °C lower than the traditional sintering temperature). A comparison with BZY20 control samples indicated that the proper amount of BaCO3 introduced on the BZY20 particle surface and the high green density achieved by cold sintering pretreatment were the main drivers for lowering the sintering temperature. The electrical conductivity measurement by electrochemical impedance spectroscopy showed that the as-prepared BZY20 pellets have a proton conductivity comparable to the state-of-the-art values. The cold sintering pretreatment outlined in this work has the potential to lower the sintering temperatures for similar types of protonic ceramic materials under consideration for a wide range of energy conversion and storage applications.  相似文献   
6.
Dense (1-x)wt%CaSnSiO5-xwt%K2MoO4 (CSSO-KMO) composite ceramics were fabricated by the cold sintering process at 180 °C under 400 MPa for 60 min. X-ray diffraction, Energy dispersive X-ray and Raman spectroscopy confirmed that CSSO and KMO coexisted without intermediate phases. As KMO weight fraction increased, relative permittivity (εr) and temperature coefficient of resonant frequency (τf) decreased and the microwave quality factor (Q×f, where f is resonant frequency) increased. Near-zero τf (-0.5 ppm/°C) was obtained for 65 wt%CSSO-35 wt%KMO with εr ~ 9.2 and Q×f ~ 6240 GHz. No chemical reaction between ceramic composites and silver was observed, demonstrating potential for cofiring with Ag-paste. A prototype antenna was fabricated from 65 wt%CSSO-35 wt%KMO composite ceramic with a bandwidth of 144 MHz @ -10 dB, a gain of 5.7 dBi and a total efficiency of 88.4 % at 5.2 GHz, suitable for 5 G mobile communication systems.  相似文献   
7.
8.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   
9.
Silica-based ceramics have been explored extensively as a class of versatile materials for various applications in architecture, catalysis, energy, machinery, and biomedical engineering. Nevertheless, comprehensive information on silica-based ceramic and electromagnetic microwave (EMW) absorption is scarce, although excellent progress has been made in this field. Here, recent progress in the investigation of silica-based ceramics toward EMW absorption is reviewed. We first introduced the basis of ceramics (characteristics, classification, synthetic methods, potential applications). Subsequently, the silica-based ceramics, including Si-based oxides and alloys, SiOC/SiC/Si3N4/SiCN-based composite, Ti3SiC2 and composite for EMW absorption were systematically summarized. Notably, the fabrication strategies, absorption properties, and mechanisms of silica-based ceramics are described in detail, with a focus on structure and component design. Lastly, the prospects and ongoing challenges of this field in the future are presented. This review is expected to learn from the past and achieve progress toward the future of silica-based ceramic for EMW absorption.  相似文献   
10.
The chromium-promoted preparation of forsterite refractory materials from ferronickel slag was investigated by microwave sintering of the slag with the additions of sintered magnesia and 0–10 wt% chromium oxide (Cr2O3). The thermodynamic calculations revealed that the addition of Cr2O3 can promote the formations of spinel and liquid phase and maintain high content of forsterite below 1500 °C. The experimental results showed that there existed a stronger promoting effect of Cr2O3 additive on the properties of refractory materials in the microwave field than that in conventional sintering. It was attributed to the preferential formation and growth of spinel with stronger microwave absorption than other phases (e.g., enstatite), the existence of more forsterite, and the enhanced densification in association with the presence of more liquid phase at the same temperature. By microwave sintering of the mixture of ferronickel slag, 25 wt% sintered magnesia, and 4 wt% Cr2O3 at 1350 °C for 20 min, a superior refractory material with refractoriness of 1801 °C, thermal shock resistance of 6 times, bulk density of 2.97 g/cm3, apparent porosity of 1.4%, and compressive strength of 197 MPa was obtained. Compared with that prepared by conventional sintering at 1350 °C for 2 h, the refractoriness and thermal shock resistance were increased by 175 °C and 100%, respectively. The present study provided a novel method for preparing high-quality refractory materials from ferronickel slag and relevant industrial wastes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号