首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12222篇
  免费   1889篇
  国内免费   1200篇
电工技术   536篇
综合类   1308篇
化学工业   755篇
金属工艺   873篇
机械仪表   452篇
建筑科学   163篇
矿业工程   94篇
能源动力   136篇
轻工业   84篇
水利工程   39篇
石油天然气   191篇
武器工业   94篇
无线电   5627篇
一般工业技术   1019篇
冶金工业   208篇
原子能技术   51篇
自动化技术   3681篇
  2024年   19篇
  2023年   172篇
  2022年   248篇
  2021年   301篇
  2020年   380篇
  2019年   369篇
  2018年   315篇
  2017年   427篇
  2016年   483篇
  2015年   572篇
  2014年   802篇
  2013年   791篇
  2012年   993篇
  2011年   951篇
  2010年   775篇
  2009年   753篇
  2008年   834篇
  2007年   849篇
  2006年   792篇
  2005年   723篇
  2004年   619篇
  2003年   519篇
  2002年   465篇
  2001年   378篇
  2000年   326篇
  1999年   275篇
  1998年   229篇
  1997年   226篇
  1996年   139篇
  1995年   160篇
  1994年   93篇
  1993年   75篇
  1992年   49篇
  1991年   40篇
  1990年   32篇
  1989年   25篇
  1988年   16篇
  1987年   13篇
  1986年   15篇
  1985年   19篇
  1984年   7篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1965年   2篇
  1963年   3篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
1.
Diabetic wound healing still faces great challenges due to the excessive inflammation, easy infection, and impaired angiogenesis in wound beds. The immunoregulation of macrophages polarization toward M2 phenotype that facilitates the transition from inflammation to proliferation phase has been proved to be an effective way to improve diabetic wound healing. Herein, an M2 phenotype-enabled anti-inflammatory, antioxidant, and antibacterial conductive hydrogel scaffolds (GDFE) for producing rapid angiogenesis and diabetic wound repair are reported. The GDFE scaffolds are fabricated facilely through the dynamic crosslinking between polypeptide and polydopamine and graphene oxide. The GDFE scaffolds possess thermosensitivity, self-healing behavior, injectability, broad-spectrum antibacterial activity, antioxidant and anti-inflammatory ability, and electronic conductivity. GDFE effectively activates the polarization of macrophages toward M2 phenotype and significantly promotes the proliferation of dermal fibroblasts, the migration, and in vitro angiogenesis of endothelial cells through paracrine mechanisms. The in vivo results from a full-thickness diabetic wound model demonstrate that GDFE can rapidly promote the diabetic wound repair and skin regeneration, through fast anti-inflammation and angiogenesis and M2 macrophage polarization. This study provides highly efficient strategy for treating diabetic wound repair through designing the M2 polarization-enabled anti-inflammatory, antioxidant, and antibacterial bioactive materials.  相似文献   
2.
According to the circle-packing theorem, the packing efficiency of a hexagonal lattice is higher than an equivalent square tessellation. Consequently, in several contexts, hexagonally sampled images compared to their Cartesian counterparts are better at preserving information content. In this paper, novel mapping techniques alongside the wavelet compression scheme are presented for hexagonal images. Specifically, we introduce two tree-based coding schemes, referred to as SBHex (spirally-mapped branch-coding for hexagonal images) and BBHex (breadth-first block-coding for hexagonal images). Both of these coding schemes respect the geometry of the hexagonal lattice and yield better compression results. Our empirical results show that the proposed algorithms for hexagonal images produce better reconstruction quality at low bits per pixel representations compared to the tree-based coding counterparts for the Cartesian grid.  相似文献   
3.
Fast image codecs are a current need in applications that deal with large amounts of images. Graphics Processing Units (GPUs) are suitable processors to speed up most kinds of algorithms, especially when they allow fine-grain parallelism. Bitplane Coding with Parallel Coefficient processing (BPC-PaCo) is a recently proposed algorithm for the core stage of wavelet-based image codecs tailored for the highly parallel architectures of GPUs. This algorithm provides complexity scalability to allow faster execution at the expense of coding efficiency. Its main drawback is that the speedup and loss in image quality is controlled only roughly, resulting in visible distortion at low and medium rates. This paper addresses this issue by integrating techniques of visually lossless coding into BPC-PaCo. The resulting method minimizes the visual distortion introduced in the compressed file, obtaining higher-quality images to a human observer. Experimental results also indicate 12% speedups with respect to BPC-PaCo.  相似文献   
4.
High-temperature water electrolysis through solid oxide electrolysis cells (SOEC) will play a key role in building a hydrogen economy in the future. However, the delamination between the air electrode and the electrolyte remains a critical issue to be addressed. Previously, it was hypothesized that Co migration may improve the catalytic activity of the SrZrO3 second phase at the LSCF-YSZ interface, eventually leading to the delamination. In this work, the LSCF-YSZ interfaces sintered at different temperatures were examined in detail. The activation behaviors of the LSCF electrodes upon application with electrolysis current were characterized under different conditions. Further, samples containing purposely added SrZrO3 interlayer with and without cobalt were fabricated and compared. The activation process is less significant for the sample with cobalt-added SrZrO3 interlayer than the sample with pure SrZrO3 layer, supporting the hypothesis that Co migration may lead to the activation behavior.  相似文献   
5.
四元数调制(Quaternion Modulation,QMod)是一种新型高传输速率的极化调制(Polarized Modulation,PMod)技术,是未来卫星通信系统中极具潜力的多元调制方案之一。QMod将数据块分成4块,其中两块是传输数据信号,另外两块则映射到极化状态部分。每个极化状态块均有一位比特,那么它们可以产生4个极化状态组合。这些状态组合可以用来确定传输数据块在四元数4个不同维度中的位置,从而获得两位额外的传输比特。相比于传统的PMod技术,QMod有着更高的频谱效率。为了进一步挖掘QMod的潜力,介绍了由可重构智能表面(Reconfigurable Intelligent Surface,RIS)辅助的QMod系统,同时推导了该系统的平均误码率理论上界,并在瑞利信道下进行了BER性能仿真。仿真结果表明,RIS辅助的PMod或者QMod系统即便在较低的SNR情况下仍有良好的BER性能,并且随着RIS单元数的增多,其BER性能会逐步提升。  相似文献   
6.
The materials processing history has a great influence on their properties and finally determines their application effect. In this paper, the ferroelectric, polarization-switching current, and strain properties of Mn-doped 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 ceramics were studied in fresh state, aged state, and poled state, respectively. Compared with the symmetric polarization-electric-field (P-E) hysteresis loops, current-density-electric-field (J-E) curves, and bipolar electric-field-induced strain (S-E) curves in fresh state samples, asymmetric P-E loops, J-E curves, and bipolar S-E curves were obtained in poled state samples. Well-aged-state samples exhibit double hysteresis P-E loop, four peaks J-E curves, and symmetric S-E curves without negative strain. The symmetry-conforming short-range order (SC-SRO) principle of point defects and internal electric field Ei is employed to clarify the different phenomenon of three states. Results indicated that randomly oriented defect polarization PD in aged samples can reverse the spontaneous polarization PS back and result in the double hysteresis P-E loop and four peaks J-E curves. The oriented PD and resulting Ei in poled-state samples will lead to the asymmetric loops and strain memory effect.  相似文献   
7.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
8.
In compressive sampling theory, the least absolute shrinkage and selection operator (LASSO) is a representative problem. Nevertheless, the non-differentiable constraint impedes the use of Lagrange programming neural networks (LPNNs). We present in this article the -LPNN model, a novel algorithm that tackles the LASSO minimization together with the underlying theory support. First, we design a sequence of smooth constrained optimization problems, by introducing a convenient differentiable approximation to the non-differentiable -norm constraint. Next, we prove that the optimal solutions of the regularized intermediate problems converge to the optimal sparse signal for the LASSO. Then, for every regularized problem from the sequence, the -LPNN dynamic model is derived, and the asymptotic stability of its equilibrium state is established as well. Finally, numerical simulations are carried out to compare the performance of the proposed -LPNN algorithm with both the LASSO-LPNN model and a standard digital method.  相似文献   
9.
Immune Thrombocytopenia (ITP) is an autoimmune disease characterized by autoantibodies-mediated platelet destruction, a prevalence of M1 pro-inflammatory macrophage phenotype and an elevated T helper 1 and T helper 2 lymphocytes (Th1/Th2) ratio, resulting in impairment of inflammatory profile and immune response. Macrophages are immune cells, present as pro-inflammatory classically activated macrophages (M1) or as anti-inflammatory alternatively activated macrophages (M2). They have a key role in ITP, acting both as effector cells, phagocytizing platelets, and, as antigen presenting cells, stimulating auto-antibodies against platelets production. Eltrombopag (ELT) is a thrombopoietin receptor agonist licensed for chronic ITP to stimulate platelet production. Moreover, it improves T and B regulatory cells functions, suppresses T-cells activity, and inhibits monocytes activation. We analyzed the effect of ELT on macrophage phenotype polarization, proposing a new possible mechanism of action. We suggest it as a mediator of macrophage phenotype switch from the M1 pro-inflammatory type to the M2 anti-inflammatory one in paediatric patients with ITP, in order to reduce inflammatory state and restore the immune system function. Our results provide new insights into the therapy and the management of ITP, suggesting ELT also as immune-modulating drug.  相似文献   
10.
To solve the electromagnetic pollution,herein,a CoFe2O4/C/PANI composite was developed by a green route,which was constructed with spinel of metal oxide,graphitized carbon and conductive polymer composites.Benefiting from the designable interfaces and increased dipoles,the microwave dielectric response capability can be boosted significantly and resulted in the enhanced microwave absorbing performance.As revealed by the reflection loss curve,the minimum reflection loss(RLmin) reached-51.81 dB at 12.4 GHz under a matched thickness of 2.57 mm.At 2.5 mm,the effective absorbing band covered 8.88 GHz,suggesting the desirable wideband feature.In our case,the method of utilization of a novel green way to fabricate multiple-component EM absorber can be a promising candidate for high-performance EM absorber.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号