首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10355篇
  免费   903篇
  国内免费   501篇
电工技术   131篇
技术理论   2篇
综合类   781篇
化学工业   873篇
金属工艺   157篇
机械仪表   315篇
建筑科学   1678篇
矿业工程   1239篇
能源动力   527篇
轻工业   507篇
水利工程   187篇
石油天然气   3313篇
武器工业   28篇
无线电   370篇
一般工业技术   441篇
冶金工业   434篇
原子能技术   61篇
自动化技术   715篇
  2024年   11篇
  2023年   169篇
  2022年   287篇
  2021年   369篇
  2020年   407篇
  2019年   261篇
  2018年   234篇
  2017年   231篇
  2016年   322篇
  2015年   336篇
  2014年   659篇
  2013年   610篇
  2012年   707篇
  2011年   815篇
  2010年   598篇
  2009年   583篇
  2008年   518篇
  2007年   550篇
  2006年   658篇
  2005年   550篇
  2004年   497篇
  2003年   454篇
  2002年   360篇
  2001年   336篇
  2000年   242篇
  1999年   233篇
  1998年   150篇
  1997年   160篇
  1996年   106篇
  1995年   74篇
  1994年   68篇
  1993年   36篇
  1992年   41篇
  1991年   30篇
  1990年   34篇
  1989年   20篇
  1988年   6篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1981年   8篇
  1980年   5篇
  1979年   2篇
  1976年   2篇
  1975年   1篇
  1957年   1篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
1.
Eco-friendly quantum dots (QDs) can be termed green QDs which stand as an attractive choice to modify the properties of known semiconductors in the direction of getting efficient photoelectrodes for solar-induced photoelectrochemical (PEC) splitting of water, due to their peculiar properties. Thus, it is of high significance to analyze their merit/demerit as an effective scaffold in PEC cell. QDs are known for their excellent optical properties however, the coupling of green QDs with semiconductor is not only useful in improving absorption characteristics but also promotes charge transfer. This review has undertaken the critical analysis on the worldwide research going on the green QDs modified photoelectrode with respect to their optical, electrical & photoelectrochemical properties, role, usefulness, efficiency, and finally the success in PEC system for hydrogen production. Various methods on the facile synthesis & sensitization techniques of green QDs available in the literature have also been discussed. Further, recent advances on the development of green QDs based photo-electrode, along with major challenges of using green QDs in this field have also been presented.  相似文献   
2.
Renewable energy integration into existing or new energy hubs together with Green technologies such as Power to Gas and Green Hydrogen has become essential because of the aim of keeping the average global temperature rise within 2 °C with regard to the Paris Agreement. Hence, all energy markets are expected to face substantial transitions worldwide. On the other hand, investigation of renewable energy systems integrated with green chemical conversion, and in particular combination of green hydrogen and synthetic methanation, is still a scarce subject in the literature in terms of optimal and simultaneous design and operation for integrated energy grids under weather intermittency and demand uncertainty. In fact, the integration of such promising new technologies has been studied mainly in the operational phase, without considering design and management simultaneously. Thus, in this work, a multi-period mixed-integer linear programming (MILP) model is formulated to deal with the aforementioned challenges. Under current carbon dioxide limitations dictated by the Paris Agreement, this model computes the best configuration of the renewable and non-renewable-based generators, their optimal rated powers, capacities and scheduling sequences from a large candidate pool containing thirty-nine different equipment simultaneously. Moreover, the effect of the intermittent nature of renewable resources is analyzed comprehensively under three different scenarios for a specific location. Accordingly, a practical scenario generation method is proposed in this work. It is observed that photovoltaic, oil co-generator, reciprocating ICE, micro turbine, and bio-gasifier are the equipment that is commonly chosen under the three different scenarios. Results also show that concepts such as green hydrogen and power-to-gas are currently not preferable for the investigated location. On the other hand, analysis shows that if the emission limits are getting tightened, it is expected that constructing renewable resource-based grids will be economically more feasible.  相似文献   
3.
Interspecific interactions among walleye Sander vitreus, lake whitefish Coregonus clupeaformis, and yellow perch Perca flavescens in Green Bay could influence the population status of each species, but potential trophic interactions are poorly understood. Our objectives were to determine if diet assemblages for each species and diet overlap among species varied spatially and temporally within Green Bay. Adult walleye (≥381 mm total length (TL); N = 981), lake whitefish (≥432 mm TL; N = 1507), and yellow perch (≥150 mm TL; N = 1174) were collected during May-October of 2018 and 2019 from multiple locations in southern and northern Green Bay. Diet assemblages of each species varied between northern and southern Green Bay, but walleye diets were more temporally variable (among months within zones and between years) than diets of lake whitefish or yellow perch. Lake whitefish represented a seasonally important prey item for walleye in southern Green Bay, composing 10 % and 41 % of walleye diets by weight in May and June, respectively. Yellow perch generally composed <15 % of walleye diets by weight but were consumed at a broader spatiotemporal scale than lake whitefish. Diet overlap between walleye and both lake whitefish and yellow perch was generally weak or moderate, whereas diet overlap between whitefish and perch was generally strong. Our assessment of adult trophic interactions suggests that changes in the population status of one species could influence fisheries for all three, and we identify additional research questions to address potential population-level effects of these trophic interactions.  相似文献   
4.
The performance of gallium promoted cobalt-ceria catalysts for ethanol steam reforming (ESR) was studied using H2O/C2H5OH = 6/1 mol/mol at 500 °C. The catalysts were synthetized via cerium-gallium co-precipitation and wetness impregnation of cobalt. A detailed characterization by N2-physisorption, XRD, H2-TPR and TEM allowed the normalization of contact time and rationalization of the role of each catalysts component for ESR. The gallium promoted catalyst, Co/Ce90Ga10Ox, was more efficient for the ethanol conversion to H2 and CO2, and the production of oxygenated by-products (such as, acetaldehyde and acetone) than Co/CeO2. The catalytic performance is explained assuming that: (i) bare ceria is able to dehydrogenate ethanol to ethylene; (ii) Ce–O–Ga interface catalyzes ethanol reforming; (iii) both Ce–O–Co and Ce–O–Ga interfaces takes part in acetone production; and (iv) cobalt sites further allow C–C scission. It is suggested that a cooperative role between Co and Ce–O–Ga sites enhance the H2 and CO2 yields under ESR conditions.  相似文献   
5.
Water electrolysis technologies aim to provide a significant increase in green hydrogen production efficiency. In this work, a framework was developed to explore the use of supercritical water for alkaline electrolysis. This framework was used to perform Arrhenius analysis as a function of potential, and to explore activation energies for sub- and supercritical water electrolysis. An analysis of the conductivity of solution unveiled a discontinuity in the trends between sub- and supercritical potassium hydroxide solution conductivity. Unlike prior work on supercritical water electrolysis, this work investigates trends in electrochemical parameters, the sources of these trends, and how they change between the sub- and supercritical regimes.  相似文献   
6.
This study was conducted to estimate the potential for green H2 in Paraguay. A total production potential of 22.5 × 106 tons/year was obtained with a main contribution (93.34%) from solar photovoltaic. The greatest potential for producing H2 from solar and wind resources is in the Western region, and from hydro resources is in the Eastern region of the country. Two end-uses of green H2 were assessed: (1) automotive transportation, replacing gasoline and diesel; and (2) residential energy, replacing firewood and LPG for cooking in households across the country. In 16 of the 17 departments, green H2 is able to replace the overall consumption of gasoline and diesel, as well as firewood and LPG. Finally, energy service cost (mobility), environmental aspects and CO2 emissions were considered for three urban mobility technologies for the Metropolitan Area of Asunción. Results show that the mobility cost of fuel cell hybrid electric buses is still very high in comparison to diesel buses and battery electric buses. However, when a longer driving range is required, fuel cell hybrid electric buses could become a viable alternative in the long term. From an environmental point of view, green H2 used in fuel cell hybrid electric buses has the potential to save about 96% of CO2 emissions in comparison to diesel buses. It is concluded that the estimated green H2 production potential favors the incorporation of the Hydrogen Economy in Paraguay.  相似文献   
7.
Hydrogen refueling station (HRS) capacity and location depend on the users, which makes it difficult to select the most favorable option before potential users are actually identified. As in Croatia, at least for now, there are no hydrogen users, this study considers a wide range of HRS capacities and their different configurations. These include hydrogen production and charging station within one existing wind farm in Croatia or both nearby the users, the hydrogen production within the wind farm and the charging station nearby the users, while hydrogen is delivered to the station with a tube trailer, and configuration of hydrogen production within the wind farm with a mobile charging station in case of several users in different locations. Each HRS configuration is evaluated by the obtained levelized cost of hydrogen depending on the capital, and operation and maintenance costs within the HRS techno-economic analysis provided.  相似文献   
8.
Software is a central component in the modern world and vastly affects the environment’s sustainability. The demand for energy and resource requirements is rising when producing hardware and software units. Literature study reveals that many studies focused on green hardware; however, limited efforts were made in the greenness of software products. Green software products are necessary to solve the issues and problems related to the long-term use of software, especially from a sustainability perspective. Without a proper mechanism for measuring the greenness of a particular software product executed in a specific environment, the mentioned benefits will not be attained. Currently, there are not enough works to address this problem, and the green status of software products is uncertain and unsure. This paper aims to identify the green measurements based on sustainable dimensions in a software product. The second objective is to reveal the relationships between the elements and measurements through empirical study. The study is conducted in two phases. The first phase is the theoretical phase, where the main components, measurements and practices that influence the sustainability of a software product are identified. The second phase is the empirical study that involved 103 respondents in Malaysia investigating current practices of green software in the industrial environment and further identifying the main sustainability dimensions and measurements and their impact on achieving green software products. This study has revealed seven green measurements of software product: Productivity, Usability, Cost Reduction, Employee Support, Energy Efficiency, Resource Efficiency and Tool Support. The relationships are statistically significant, with a significance level of less than 0.01 (p = 0.000). Thus, the hypothesised relationships were all accepted. The contributions of this study revolve around the research perspectives of the measurements to attain a green software product.  相似文献   
9.
《Ceramics International》2022,48(14):20134-20145
M-type calcium hexaferrite- CaFe12O19 (CaM) has been prepared in presence of Azadirachta indica, and Murraya koenigii leaves extracts, followed by calcination at 650 °C for 3h. It was observed that the presence of phytochemicals in both leaves extract plays a vital role in deciding the structural, optical, microstructural, magnetic, and dielectric properties of prepared CaM hexaferrites. Prepared samples were characterized using FT-IR, XRD, UV–Vis, SEM, VSM, and dielectric measurements. FTIR, UV– Vis, and antioxidant assay confirmed the presence of phenolic content and antioxidant property of plant extract. This further resulted in the formation of a pure hexagonal phase as revealed by the XRD analysis. The surface morphology of prepared ferrites modified through this greener route was illustrated by the spongy appearance of ferrites in SEM micrographs.The saturation magnetization for the CaM powder prepared using Murraya koenigii leaves extract is 11.78 Am2/kg, while that prepared from Azadirachta indica leaves extract is 3.56 Am2/kg. Both samples show a magnetically soft nature, with a multidomain structure. The energy bandgap was also observed to be 2.01 eV. Moreover, the calcium ferrite synthesized by Murraya koenigii leaves had εmax ~ 25 and that synthesized in presence of Azadirachta indica leaves had εmax ~ 200 at ~20 Hz.  相似文献   
10.
井间是剩余油的主要分布区域,为探测井间剩余油,提高采收率,提出了基于全空间几何因子的瞬变电磁井间勘探方法。在本井使用线圈发射、邻井使用线圈接收,根据瞬变电磁场理论,在阶跃信号的激励下发射线圈在地层中激发出沿圆周方向的闭合瞬变电场,该电场在导电地层中产生与地层电导率呈正比的涡流。由Doll地层环模型可知,地层中的涡流在空间任意点激发得到与地层电导率成正比的二次场响应信号(有用信号),并可表示为空间各点电导率的加权平均值,其权重即为井间瞬变电磁勘探的全空间几何因子;全空间几何因子集中分布在发射线圈和接收线圈附近,其它区域分布较少,在发射线圈和接收线圈两侧呈现不同的极性;对瞬变电磁响应与地层电导率、井间距和源距的变化规律研究可知,瞬变电磁井间勘探有用信号随着地层电导率的增大而增大,随着井间距的增加单调减小,在发射线圈和接收线圈处于同一深度时该响应信号幅度最大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号