首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12671篇
  免费   1364篇
  国内免费   1257篇
电工技术   2497篇
综合类   885篇
化学工业   1671篇
金属工艺   201篇
机械仪表   289篇
建筑科学   2457篇
矿业工程   151篇
能源动力   390篇
轻工业   3691篇
水利工程   149篇
石油天然气   203篇
武器工业   51篇
无线电   430篇
一般工业技术   1305篇
冶金工业   238篇
原子能技术   64篇
自动化技术   620篇
  2024年   60篇
  2023年   228篇
  2022年   294篇
  2021年   376篇
  2020年   388篇
  2019年   318篇
  2018年   243篇
  2017年   334篇
  2016年   376篇
  2015年   469篇
  2014年   876篇
  2013年   769篇
  2012年   1104篇
  2011年   1170篇
  2010年   866篇
  2009年   892篇
  2008年   741篇
  2007年   943篇
  2006年   828篇
  2005年   695篇
  2004年   572篇
  2003年   545篇
  2002年   460篇
  2001年   408篇
  2000年   274篇
  1999年   225篇
  1998年   145篇
  1997年   120篇
  1996年   111篇
  1995年   94篇
  1994年   72篇
  1993年   63篇
  1992年   49篇
  1991年   33篇
  1990年   22篇
  1989年   22篇
  1988年   16篇
  1987年   12篇
  1986年   7篇
  1985年   16篇
  1984年   8篇
  1983年   11篇
  1982年   14篇
  1980年   3篇
  1979年   3篇
  1978年   6篇
  1977年   3篇
  1975年   3篇
  1968年   2篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
醌类化合物是PM2.5中的一类有害物质。本研究建立了纸喷雾离子化衍生质谱法快速测定PM2.5中的醌类污染物。通过衍生化反应在醌化合物中引入氨基,提高醌在纸喷雾中的离子化效率。随后对衍生化试剂种类、电压、喷雾溶剂种类等反应条件进行优化。在最优实验条件下,采用内标法定量分析1,4-苯醌、甲基对苯醌、1,4-萘醌和1,4-蒽醌,4种化合物均呈现较好的线性关系,其检出限分别为4.49、20.89、0.13、0.17 ng。利用该方法分析PM2.5实际样品中的萘醌和蒽醌,均获得了较好的定性和定量结果。  相似文献   
2.
Gas diffusion layer (GDL) is one of the most important components of fuel cells. In order to improve the fuel cell performance, GDL has developed from single layer to dual layers, and then to multiple layers. However, dual or multi layers in GDL are usually prepared by layer-by-layer methods, which cost too much time, energy, and resources. In this work, we successfully developed a facile one-step method to prepare a GDL with three functional layers by utilizing the different sedimentation rates and filtration rates of short carbon fiber (CF) and carbon nanotube (CNT). The treatment temperature for this GDL is much lower than that of traditional method. The thickness of the GDL can be effectively controlled from as thin as 50 μm to more than 200 μm by simply adjusting the content of CF. The GDL with high flexibility is suitable to develop high performance flexible electronics. The fuel cell with the GDL has the maximum power density 1021 mW cm?2, which shows 19% improvement comparing to the conventional one. Therefore, this work breaks the traditional concept that GDL for fuel cells only can be prepared by very complex and high-cost procedure.  相似文献   
3.
《Ceramics International》2022,48(22):32994-33002
Al2O3 aerogels are widely employed in heat insulation and flame retardancy because of their unique combination of low thermal conductivity and exceptional high-temperature stability. However, the mechanical properties of Al2O3 aerogel are poor, and the preparation time is considerably long. In this study, we present a simple and scalable approach to construct monolithic Pal/Al2O3 composite aerogels using solvothermal treatment instead of traditional solvent replacement, which remarkably shortened the preparation time. Subsequently, to obtain stable superhydrophobicity (θ > 152°), the Pal/Al2O3 aerogel was modified by gas-phase modification method. The obtained Pal/Al2O3 composite aerogels demonstrate the integrated properties of low density (0.078–0.106 g/cm3), low thermal conductivity (1000 °C, 0.143 W/(m·K)), good mechanical properties (Young's modulus, 1.6 MPa), and good heat resistance. The monolithic Pal/Al2O3 composite aerogels with improved mechanical performance and improved thermal stability can show great potential in the field of thermal insulation.  相似文献   
4.
Ceramics are considered intrinsically brittle at room temperature, which is mainly attributed to the limited availability of crystallographic slips and pre-existing geometrical flaws. Moreover, the lack of flexibility has severely hindered many high-end applications of ceramic materials. Here, we produce ceramic sponges that are simultaneously ultra-light, elasto-flexible, thermally insulating, and can fully recover from large deformation with a near-zero Poisson's ratio. These spongy materials also possess superb fatigue resistance without the accumulation of damage or structural collapse for 10,000 large-scale compressive or buckling cycles. We demonstrate the exceptional flexibility is enabled by the elastic distortion of nanograin–glassy dual phase and the fiber bulking in open-cell three-dimensional structure. Moreover, these spongy materials possess superior temperature-invariant superelasticity from deep cryogenic temperatures (−196 °C) to high temperature (1500 °C). Our study not only developed mechanically reliable lightweight ceramics for numerous extreme applications, but also provided new theoretical insights into the origin of flexibility in polycrystalline ceramics.  相似文献   
5.
The gas diffusion substrate (GDS) is essential in the proton exchange membrane fuel cells. Its fabrication techniques affect the performance significantly and are worthy of investigation. In this study, a manufacturing process of the GDS is proposed to understand the formation process of GDS and promote its structure and performance more pertinently. Different states during the preparation process, raw carbon paper, pre-curing, curing, carbonation, and graphitization, are characterized and measured. Experimental and numerical methods are employed to determine the relationships between microstructure, transport, and mechanical performance variation with the fabricating processes. The results show that its porosity, average pore size, and effective diffusivity decrease first and increase after curing. These parameters after graphitization are lower than that of the carbon paper (CP). The electrical resistivity increases dramatically while pre-curing and decreases gradually after curing, carbonation, and graphitization, and it is much reduced after graphitization. Moreover, mechanical measurement results show that both the picks of tensile strength and flexural modulus occur after curing. Its tensile strength shows little change after graphitization compared to the initial paper's. In contrast, the flexural modulus is improved significantly.  相似文献   
6.
The current trends in energy were described, the main of which is the use of alternative energy sources, especially hydrogen. The most common methods of hydrogen accumulation were proposed: accumulation of compressed gaseous hydrogen in high-pressure tanks; accumulation of liquid hydrogen in cryogenic tanks; storing hydrogen in a chemically bound state; accumulation of gaseous hydrogen in carriers with a high specific surface area. Based on the combination of advantages and disadvantages, the most promising methods of accumulation were selected: storage of liquid hydrogen and storage of hydrogen in carriers with a high specific surface area. The main requirement for materials for hydrogen storage by these methods was revealed – a high specific surface area. Prospects for the development of waste-free low-emission technologies due to the recycling of secondary raw materials and the development of low-temperature technologies for the synthesis of functional and structural materials were substantiated. The applicability of large-scale ash and slag waste from coal-fired thermal power plants as a raw material for obtaining materials by low-temperature technologies was shown. The traditional ways of using ash and slag waste as a raw material, active additive and filler in the production of cements were described. Modern technologies for the production of innovative materials with a unique set of properties were presented, namely carbon nanotubes, silica aerogel and geopolymer materials. The prospect of using geopolymer matrices as a precursor for the synthesis of a number of materials was described; the most promising type of materials was selected – geopolymer foams, which are mainly used as sorbents for purifying liquids and gases or accumulating target products, as well as heat-insulating materials. The possibility of obtaining products of any shape and size on the basis of geopolymer matrices without high-temperature processing was shown. The special efficiency of the development of the technology of porous granules and powders obtained from a geopolymer precursor using various methods was substantiated. The obtained granules can be used in the following hydrogen storage technologies: direct accumulation of hydrogen in porous granules; creation of insulating layers for liquid hydrogen storage units.  相似文献   
7.
《Ceramics International》2021,47(24):34361-34379
This paper aimed to design and optimize the structure of a thick thermal barrier coating by adding graded layers to achieve a balance between high thermal insulation capacity and durability. To this end, conventional TBC, conventional TTBC, and functionally graded TTBCs were deposited on the superalloy substrate by air plasma spraying. To determine the quality of the bond strength of the coatings, the bonding strength was measured. The durability of coatings was evaluated by isothermal oxidation and thermal shock tests. Then, at a temperature of 1000 °C, the thermal insulation capacity of the coatings was carried out. The microstructure of the coatings was characterized by a scanning electron microscope. The results showed that the thickness of the TGO layer formed on the bond coat in the conventional TBC and TTBC under the oxidation test at 1000 °C after 150 h was 2.79 and 2.11 μm, respectively, whereas, in the functionally graded TTBC samples, no continuous TGO layer was observed as a result of internal oxidation. The functionally graded TTBC presented higher durability than conventional TTBC due to improved bonding strength, thermal shock resistance, and the lack of a TGO layer at the bond/top coat interface. Also, the thermal insulation capacity of the functionally graded TTBC (with 1000 μm thickness of YSZ coating) was better than TTBC.  相似文献   
8.
王东 《水泥工程》2021,34(4):42-44
根据水泥烧成热耗的组成,降低高温设备表面散热是降低水泥烧成热耗的重要途径之一,而减少高温窑炉墙壁的热传导可有效降低设备的表面散热。本文在介绍无机内保温涂层隔热原理的基础上,对保温涂层的应用效果进行了对比研究,通过在传统耐火隔热材料的基础上增加新型无机内保温涂层,可有效降低高温设备外表面温度,减少水泥生产中的散热损失,达到节能降耗的目的。  相似文献   
9.
For an effective optimization of pulp thermoforming and of the moulded pulp products manufactured by this process, a full understanding of the process physics combined with full knowledge of the pressing equipment is necessary. For this reason, in this Addendum, we clarify how the process parameters “Holding time,” “Vacuum time,” “Cycle time,” and “Temperature” were interpreted and subsequently defined for the analysis of the process and product‐related outputs of the thermoforming experiments.  相似文献   
10.
《Ceramics International》2022,48(14):20220-20227
A specially designed experimental device was used in laboratory to investigate the corrosion of mullite during the calcination of Li(NixCoyMnz)O2 (LNCM) materials. The anti-corrosion tests were carried out at 1000, 1100, 1200 and 1300 °C, and characterized with X-ray diffraction and scanning electron microscopy. The influence of temperature on the interactions between mullite insulation materials and LNCM materials was determined. In addition, the high-temperature creep properties of the mullite insulation materials before and after corrosion were tested. The laboratory scale tests, thermodynamic and kinetic calculations allowed a more comprehensive understanding of the evolution of the mullite insulation materials during serving for the roasting process of LNCM materials. Through this research, it is suggested that the upgrading of the kiln lining in the lithium battery industry should select materials with excellent resistance to alkali corrosion, especially excellent resistance to Li+ corrosion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号