首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39801篇
  免费   6187篇
  国内免费   2713篇
电工技术   3215篇
技术理论   2篇
综合类   3736篇
化学工业   5329篇
金属工艺   3065篇
机械仪表   2440篇
建筑科学   4169篇
矿业工程   2288篇
能源动力   3012篇
轻工业   3729篇
水利工程   2088篇
石油天然气   2744篇
武器工业   479篇
无线电   2990篇
一般工业技术   3803篇
冶金工业   2084篇
原子能技术   734篇
自动化技术   2794篇
  2024年   158篇
  2023年   911篇
  2022年   1658篇
  2021年   1956篇
  2020年   2003篇
  2019年   1605篇
  2018年   1423篇
  2017年   1695篇
  2016年   1724篇
  2015年   1767篇
  2014年   2541篇
  2013年   2846篇
  2012年   2932篇
  2011年   3067篇
  2010年   2349篇
  2009年   2360篇
  2008年   1983篇
  2007年   2295篇
  2006年   2047篇
  2005年   1742篇
  2004年   1493篇
  2003年   1271篇
  2002年   1076篇
  2001年   878篇
  2000年   807篇
  1999年   636篇
  1998年   498篇
  1997年   402篇
  1996年   388篇
  1995年   371篇
  1994年   303篇
  1993年   251篇
  1992年   190篇
  1991年   184篇
  1990年   175篇
  1989年   153篇
  1988年   96篇
  1987年   70篇
  1986年   46篇
  1985年   60篇
  1984年   49篇
  1983年   25篇
  1982年   37篇
  1981年   19篇
  1980年   27篇
  1978年   10篇
  1976年   8篇
  1964年   14篇
  1959年   12篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
深凹露天矿山由于其特殊的结构,爆破产生的炮烟扩散稀释较为困难,严重危害生产作业人员的生命安全与健康。基于实际矿山构建了深凹露天矿山的二维物理及数学模型,采用非稳态数值分析方法研究了不同爆破位置下,深凹露天矿山采坑内爆破炮烟的扩散规律。研究结果表明:不同爆破位置下,露天采坑内均出现复环流,爆破点位置是影响露天采坑内风流结构特征的重要因素;露天采坑内的炮烟最高浓度均随着时间变化而逐渐下降,但下降的速率逐步减小,呈现三个阶段的下降趋势;爆破位置位于背风侧时露天采坑内的炮烟最高浓度和降至安全浓度所需时间远高于迎风侧三个爆破位置;随着背风侧爆破点距采坑底部距离的减小,炮烟最高浓度及降至安全浓度所需时间先降低后增加,炮烟最高浓度及降至安全浓度所需时间随着迎风侧爆破位置距采坑底部距离的减小而增加。研究结果对于指导深凹露天矿山企业合理组织爆破后的生产作业和保障作业人员安全具有重要意义。  相似文献   
2.
The gas diffusion substrate (GDS) is essential in the proton exchange membrane fuel cells. Its fabrication techniques affect the performance significantly and are worthy of investigation. In this study, a manufacturing process of the GDS is proposed to understand the formation process of GDS and promote its structure and performance more pertinently. Different states during the preparation process, raw carbon paper, pre-curing, curing, carbonation, and graphitization, are characterized and measured. Experimental and numerical methods are employed to determine the relationships between microstructure, transport, and mechanical performance variation with the fabricating processes. The results show that its porosity, average pore size, and effective diffusivity decrease first and increase after curing. These parameters after graphitization are lower than that of the carbon paper (CP). The electrical resistivity increases dramatically while pre-curing and decreases gradually after curing, carbonation, and graphitization, and it is much reduced after graphitization. Moreover, mechanical measurement results show that both the picks of tensile strength and flexural modulus occur after curing. Its tensile strength shows little change after graphitization compared to the initial paper's. In contrast, the flexural modulus is improved significantly.  相似文献   
3.
Gas diffusion layer (GDL) is one of the most important components of fuel cells. In order to improve the fuel cell performance, GDL has developed from single layer to dual layers, and then to multiple layers. However, dual or multi layers in GDL are usually prepared by layer-by-layer methods, which cost too much time, energy, and resources. In this work, we successfully developed a facile one-step method to prepare a GDL with three functional layers by utilizing the different sedimentation rates and filtration rates of short carbon fiber (CF) and carbon nanotube (CNT). The treatment temperature for this GDL is much lower than that of traditional method. The thickness of the GDL can be effectively controlled from as thin as 50 μm to more than 200 μm by simply adjusting the content of CF. The GDL with high flexibility is suitable to develop high performance flexible electronics. The fuel cell with the GDL has the maximum power density 1021 mW cm?2, which shows 19% improvement comparing to the conventional one. Therefore, this work breaks the traditional concept that GDL for fuel cells only can be prepared by very complex and high-cost procedure.  相似文献   
4.
《Journal of dairy science》2022,105(11):8621-8637
Lactobacillus reuteri fortified camel milk infant formula (CMIF) was produced. The effect of encapsulation in different matrices (sodium alginate and galacto-oligosaccharides) via spray drying, simulated infant gastrointestinal digestion (SIGID), and storage conditions (temperature and humidity) on the viability of L. reuteri in CMIF and the physicochemical properties of CMIF were evaluated. Compared with free cells, probiotic cell viability was significantly enhanced against SIGID conditions upon encapsulation. However, L. reuteri viability in CMIF decreased after 60 d of storage, predominantly at higher storage humidity and temperature levels. At the end of the storage period, significant changes in the color values were observed in all CMIF, with a reduction in their greenness, an increase in yellowness, and a wide variation in their whiteness. Moreover, pH values and caking behavior of all CMIF stored at higher temperature (40°C) and humidity [water activity (aw) = 0.52] levels were found to be significantly higher than the samples stored under other conditions. Over 30 d of storage at lower humidity conditions (aw = 0.11 and 0.33) and room temperature (25°C), no significant increase in CMIF lipid oxidation rates was noted. Fourier-transform infrared spectroscopy analysis showed that, compared with the other storage conditions, CMIF experienced fewer changes in functional groups when stored at aw = 0.11. Microscopic images showed typical morphological characteristics of milk powder, with round to spherical-shaped particles. Overall, camel milk fortified with encapsulated L. reuteri can be suggested as a promising alternative in infant formula industries, potentially able to maintain its physicochemical characteristics as well as viability of probiotic cells when stored at low humidity levels (aw = 0.11) and temperature (25°C), over 60 d of storage.  相似文献   
5.
6.
In order to reveal the mechanism of water fog explosion suppression and research the combined effect of water fog and obstacle on hydrogen/air deflagration, multiple sets of experiments were set up. The results show that the instability of thermal diffusion under lean combustion conditions is the main influencing factor of hydrogen/air flame surface instability, and the existence of water fog will aggravate the hydrogen/air flame surface instability. When obstacle is not considered, 8 μm, 15 μm, 30 μm water fog can significantly reduce the flame velocity and explosion overpressure of hydrogen/air, 45 μm fine water fog plays the opposite role. When considering the relative position of the water fog release position and the obstacle, the 8 μm, 15 μm, 30 μm water fog has almost no suppression effect when released near the obstacle, but a significant suppression effect occur, when using the 45 μm water fog. In the field of theoretical research, the research results not only provide an experimental basis for the fine water fog to reduce the consequences of hydrogen explosion accidents, and the optimal diameter range used by the water fog, but also provide experimental reference for the numerical simulation of hydrogen/air explosion suppression in semi-open space, and promote the development of hydrogen explosion suppression theory. In terms of engineering applications, this study can provide a theoretical basis for the layout of fire fighting equipment in the engine room of nuclear power plants or hydrogen-powered ships.  相似文献   
7.
现代战场中的无线通信设备日益增多,精准获取个体信息已成为研究热点,但也是难点。针对通信电台,提出了一种分选识别技术。该技术从电台物理层特性出发,对其辐射信号的细微特征进行K-means聚类以实现分选,分选的同时提取各个个体的特征属性值,未知信号通过与特征属性值相关运算实现个体识别。该技术无需先验知识,无需训练运算,通过实验验证,其可行、高效,易于工程实现。  相似文献   
8.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   
9.
《Ceramics International》2022,48(24):36860-36870
For the advantages of high-temperature resistance, corrosion resistance and ultra-high hardness, SiCf/SiC composite is becoming a preferred material for manufacturing aero-engine parts. However, the anisotropy and heterogeneity bring great challenges to the processing technology. In this study, a nanosecond pulsed laser is applied to process SiCf/SiC composite, where the influence of the scanning speed and laser scanning direction to the SiC fibers on the morphology of ablated grooves is investigated. The surface characteristics after ablation and the involved chemical reaction of SiCf/SiC are explored. The results show that the increased laser scanning speed, accompanied by the decreasing spot overlap rate, leads to the less accumulation of energy on the material surface, so the ablation effect drops. In addition, for the anisotropy of the SiCf/SiC material, the obtained surface characteristics are closely dependent on the laser scanning direction to the SiC fibers, resulting in different groove morphology. The element composition and phase analysis of the machined surface indicate that the main deposited product is SiO2 and the carbon substance. The results can provide preliminary technical support for controlling the machining quality of ceramic matrix composites.  相似文献   
10.
The heat production and thermal storage characteristics of rapid-preparation amorphous powder activated coke (RAC) were investigated. RAC was prepared by using a drop-tube reactor system. The natural oxidation characteristics of RAC were studied through combined TG–FTIR analysis and temperature-programmed experiment. Experimental results showed that CO and CO2 were the main oxidation products of RAC in air, and that the oxidation reaction was in accordance with the Arrhenius equation and law of mass action. Thermal storage characteristics were studied through computational fluid dynamics simulation. The maximum excess temperature θmax increases linearly with the increase of the initial temperature. The concentration fields of the products show that CO2 is mainly concentrated in the upper part of the coke bin, and the CO generated by CO2 at high temperature is mainly concentrated in the central part of the coke bin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号