首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2889篇
  免费   575篇
  国内免费   25篇
电工技术   37篇
综合类   76篇
化学工业   2604篇
金属工艺   7篇
机械仪表   6篇
建筑科学   16篇
矿业工程   6篇
能源动力   16篇
轻工业   177篇
石油天然气   153篇
武器工业   5篇
无线电   50篇
一般工业技术   241篇
冶金工业   3篇
原子能技术   91篇
自动化技术   1篇
  2024年   13篇
  2023年   31篇
  2022年   36篇
  2021年   138篇
  2020年   135篇
  2019年   71篇
  2018年   89篇
  2017年   126篇
  2016年   152篇
  2015年   160篇
  2014年   200篇
  2013年   223篇
  2012年   164篇
  2011年   170篇
  2010年   132篇
  2009年   136篇
  2008年   121篇
  2007年   154篇
  2006年   168篇
  2005年   178篇
  2004年   166篇
  2003年   169篇
  2002年   113篇
  2001年   80篇
  2000年   48篇
  1999年   39篇
  1998年   33篇
  1997年   23篇
  1996年   19篇
  1995年   26篇
  1994年   29篇
  1993年   24篇
  1992年   22篇
  1991年   23篇
  1990年   14篇
  1989年   8篇
  1988年   8篇
  1987年   8篇
  1986年   7篇
  1985年   9篇
  1984年   10篇
  1983年   5篇
  1982年   8篇
  1951年   1篇
排序方式: 共有3489条查询结果,搜索用时 15 毫秒
1.
During curing of thermosetting resins the technologically relevant properties of binders and coatings develop. However, curing is difficult to monitor due to the multitude of chemical and physical processes taking place. Precise prediction of specific technological properties based on molecular properties is very difficult. In this study, the potential of principal component analysis (PCA) and principal component regression (PCR) in the analysis of Fourier transform infrared (FTIR) spectra is demonstrated using the example of melamine-formaldehyde (MF) resin curing in solid state. FTIR/PCA-based reaction trajectories are used to visualize the influence of temperature on isothermal cure. An FTIR/PCR model for predicting the hydrolysis resistance of cured MF resin from their spectral fingerprints is presented which illustrates the advantages of FTIR/PCR compared to the combination differential scanning calorimetry/isoconversional kinetic analysis. The presented methodology is transferable to the curing reactions of any thermosetting resin and can be applied to model other technologically relevant final properties as well.  相似文献   
2.
Hydrogels based on chitosan are very versatile materials which can be used for tissue engineering as well as in controlled drug delivery systems. One of the methods for obtaining a chitosan-based hydrogel is crosslinking by applying different components. The objective of the present study was to obtain a series of new crosslinked chitosan-based films by means of solvent casting method. Squaric acid—3,4-dihydroxy-3-cyclobutene-1,2-dione—was used as a safe crosslinking agent. The effect of the squaric acid on the structural, mechanical, thermal, and swelling properties of the formed films was determined. It was established that the addition of the squaric acid significantly improved Young’s modulus, tensile strength, and thermal stability of the obtained materials. Moreover, it should be stressed that the samples consisting of chitosan and squaric acid were characterized by a higher swelling than pure chitosan. The detailed characterization proved that squaric acid could be used as a new effective crosslinking agent.  相似文献   
3.
Crosslinking of polyolefin elastomer (POE, ENGAGE™ 8480) with Dicumyl Peroxide (DCP) can have effects on its crystallization dynamics, crystal structure, and properties. The POE crosslinked uniformly has significantly lower crystalline ability than the one with only amorphous phase crosslinked, which, in turn, has weaker crystalline ability than neat POE. The crystallinity and melting point depend on how the POE is crosslinked. The neat POE and POE crosslinked in amorphous phase only, are investigated with DSC and in-situ tensile/synchrotron radiation (WAXD/SAXS). In situ tensile/synchrotron X-ray during a uniaxial stretching process indicates that severe crystal fragmentation is observed at a strain around 45%, and with further increase in strain. The stress in the crosslinked POE is significantly larger than neat POE. For both samples, crystal orientation increases sharply within the strain range up to 88% where orientation-induced new crystals aligned in stretching direction are observed. The long period increases more in stretching direction for the crosslinked POE, consistent with larger stress in this sample, and the stress difference is more pronounced at large strains (27.3 vs. 10.9 MPa at a strain 435%). Permanent set of the crosslinked POE is smaller, consistent with less oriented crystals observed after the test for permanent set.  相似文献   
4.
The current demand for high-refractive index materials is very high due to their importance in optoelectronic applications. Such materials already exist in the market, but they present many disadvantages. They might contain toxic metals; their preparation can be challenging or produce high quantity of waste. Consequently, there is an urgent need to produce new friendly coatings with high-refractive index. Hybrid organic–inorganic polysiloxanes can offer a solution to this problem. They can be easily prepared from nontoxic alkoxy silanes using the sol–gel chemistry process. Herein, a series of new hybrid polysiloxanes are synthesized from the monomer 1–(2–(triethoxysilyl)ethyl)triphenylsilane and other silanes. The preparation of the macromolecules is optimized at both stages of the sol–gel process. The polymers are characterized by gel permeation chromatography and NMR spectroscopy. Spin coating of the materials on silicon wafers, followed by film thickness and refractive index measurements, indicates that the new polysiloxanes can have refractive indexes as high as 1.6 with thicknesses varying from 2200 to 3700 nm. Consequently, it is expected that the new materials described in this report are valuable for optoelectronic applications such as high-dielectric constant (high-k) gate oxides, interlayer high-k dielectrics, or high-refractive index abrasion resistant coatings.  相似文献   
5.
In present work, the development of macroporous monolithic layers bearing the artificial recognition sites toward L-phenylalanine has been carried out. The set of macroporous poly(2-aminoethyl methacrylate-co-2-hydroxyethyl methacrylate-co-ethylene glycol dimethacrylate) materials with average pore size ranged in 340–1200 nm was synthesized. The applicability of Hildebrand's and Hansen's theories for the prediction of polymer compatibility with porogenic solvents was evaluated. The dependences of average pore size on theoretically calculated parameters were plotted. The linear trend detected for Hansen's theory has indicated the high suitability of this approach to select appropriate porogens. The synthesized monolithic MIP layers were tested toward the ability to rebind phenylalanine-derivative in microarray format. The influence of such factors as average pore size of the material, the concentration of template molecule in polymerization mixture, interaction time of analyte with its imprinted sites on binding efficiency were studied. The developed materials demonstrated good analyte rebinding from buffer solution with recognition factors 2.5–3.4 depending on the MIP sample. The comparable rebinding efficiency was also detected when the analysis was carried using complex biological media. The selectivity of phenylalanine binding from the equimolar mixture of structural analogues was 81.9% for free amino acid and 91.2% for labeled one.  相似文献   
6.
Determining the structure of the (oligomeric) intermediates that form during the self-assembly of amyloidogenic peptides is challenging because of their heterogeneous and dynamic nature. Thus, there is need for methodology to analyze the underlying molecular structure of these transient species. In this work, a combination of fluorescence quenching, photo-induced crosslinking (PIC) and molecular dynamics simulation was used to study the assembly of a synthetic amyloid-forming peptide, Aβ16-22. A PIC amino acid containing a trifluormethyldiazirine (TFMD) group—Fmoc(TFMD)Phe—was incorporated into the sequence (Aβ*16–22). Electrospray ionization ion-mobility spectrometry mass-spectrometry (ESI-IMS-MS) analysis of the PIC products confirmed that Aβ*16–22 forms assemblies with the monomers arranged as anti-parallel, in-register β-strands at all time points during the aggregation assay. The assembly process was also monitored separately using fluorescence quenching to profile the fibril assembly reaction. The molecular picture resulting from discontinuous molecule dynamics simulations showed that Aβ16-22 assembles through a single-step nucleation into a β-sheet fibril in agreement with these experimental observations. This study provides detailed structural insights into the Aβ16-22 self-assembly processes, paving the way to explore the self-assembly mechanism of larger, more complex peptides, including those whose aggregation is responsible for human disease.  相似文献   
7.
The gelation characteristics of acrylic‐acid‐based polymers in the presence of a range of cationic species, namely Ca2+, Mg2+ and Al3+, were investigated using in situ rheological measurements during photo‐polymerisation. Fourier transform mechanical spectroscopy was used to identify the gel point, using the Winter–Chambon criteria which allow the gel point to be pinpointed by establishing the sample spanning network and quantitatively determining stiffness, relaxation exponent, gel stiffness and fractal dimensions. The results showed that the gelation processes were greatly influenced by the type of cationic species that was used in the syntheses. At the gel point, more open network clusters were formed when Al3+ cations were used instead of Ca2+ cations or Mg2+ cations, all relating to chloride salts. Although the concentrations of the chelating/crosslinking aluminium species affected the kinetics of the gelation, the critical gel characteristics were hardly affected. Also the solubility of the chosen aluminium salt was shown to dictate the crosslinking rates and the properties of the critical gels. The extents of the reactions and the types of network formed at the gel point and beyond indicated that reactions between the Al3+ ions and COOH sites, from growing poly(acrylic acid) molecular chains, differ from those exhibited by Mg2+ and Ca2+ ions. All of the chelation/crosslinking reactions met the criteria of low mutation number (Nmu), such that in all cases Nmu ? 1. © 2019 Society of Chemical Industry  相似文献   
8.
Maleated poly(lactic acid) (PLA-g-MA) was prepared through melt grafting of maleic anhydride onto a PLA backbone with the aid of a radical initiator. PLA-g-MA thus formed was incorporated into PLA/polyamide 11 (PA11) blends as a reactive compatibilizer. By morphological observation, it was assessed that PLA-g-MA lowered the interfacial energy and strengthened the interface between PLA and PA11. However, the compatibilized PLA/PA11 blends did not show significant improvement of impact strength compared with noncompatibilized PLA/PA11 blends. Measurements of the molecular weight and impact strength of PLAs compounded with various amounts of radical initiators revealed that decreased molecular weight of PLA by the radical initiator used for the preparation of PLA-g-MA is responsible for this unexpected result. To compensate the decrease of the molecular weight, a crosslinking agent was incorporated in the preparation step of PLA-g-MA. It was found that the crosslinking agent is effective in preventing the molecular weight reduction. As a result, the impact strength of the PLA/PA11 blend was enhanced to a great extent by the PLA-g-MA prepared with the crosslinking agent.  相似文献   
9.
Double‐network hydrogels were conveniently synthesized by the one‐shot radical polymerization of an ionic monomer for the first network and a non‐ionic monomer for the second network in the presence of crosslinkers by simultaneous addition of the monomers, that is, one‐shot and spontaneous two‐step polymerization accompanying the delay of polymerization of a second network monomer. We analyzed the polymerization process based on the conversion of each monomer during the reaction in the absence of crosslinkers. Then we fabricated the double‐network hydrogels using several polymerization systems consisting of a conjugated monomer and a non‐conjugated monomer in the presence of the dual crosslinkers. We analyzed the swelling, mechanical and viscoelastic properties of hydrogels synthesized by one‐shot radical polymerization to confirm the production mechanism and the network structure of the hydrogels. © 2020 Society of Chemical Industry  相似文献   
10.
High-performance Kevlar fiber had extensively been explored to upgraded mechanical properties of the advanced composites. Therefore, this study aimed a challenging work to grow carbon nanofibers onto the Kevlar fiber to improve its fiber-matrix interaction properties. It was successfully done through inexpensive flame deposition as well as modification of matrix with hybrid resin using polyurethane-epoxy mixture. A hand-layup method had been adopted to manufacture the composite laminates. The chemical and surface structures of the prepared laminae were examined by scanning electron microscopy, Raman spectroscopy, X-ray diffraction, and the composite's properties were evaluated tensile test, compact tension (CT) fracture test, fractography, and differential scanning calorimetry. The surface modified Kevlar laminae with CNF were used as reinforcing layer in the epoxy and PU/epoxy hybrid resin matrices. CNF-coated heated Kevlar reinforced laminated PU/epoxy hybrid composites (CNF-Kev/PU-Epoxy) showed highest elongation 47% and fracture toughness (11.7 MPa√m) along with good UTS 139 MPa. Therefore, these hybrid nanocomposites developed by simple inexpensive method would be the potential candidates for several advanced applications particularly in defense, automobile, aerospace, and spacecraft applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48802.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号