首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48109篇
  免费   5590篇
  国内免费   3691篇
电工技术   6126篇
综合类   4606篇
化学工业   8790篇
金属工艺   1984篇
机械仪表   1697篇
建筑科学   5372篇
矿业工程   2353篇
能源动力   1764篇
轻工业   5290篇
水利工程   2407篇
石油天然气   2373篇
武器工业   441篇
无线电   2004篇
一般工业技术   4582篇
冶金工业   1169篇
原子能技术   311篇
自动化技术   6121篇
  2024年   143篇
  2023年   951篇
  2022年   1300篇
  2021年   1708篇
  2020年   1856篇
  2019年   1783篇
  2018年   1637篇
  2017年   1781篇
  2016年   1923篇
  2015年   1995篇
  2014年   2815篇
  2013年   3093篇
  2012年   3399篇
  2011年   3640篇
  2010年   2686篇
  2009年   2992篇
  2008年   2635篇
  2007年   3154篇
  2006年   2822篇
  2005年   2403篇
  2004年   2060篇
  2003年   1678篇
  2002年   1394篇
  2001年   1171篇
  2000年   1005篇
  1999年   952篇
  1998年   738篇
  1997年   610篇
  1996年   564篇
  1995年   466篇
  1994年   429篇
  1993年   337篇
  1992年   327篇
  1991年   213篇
  1990年   137篇
  1989年   121篇
  1988年   85篇
  1987年   62篇
  1986年   47篇
  1985年   30篇
  1984年   52篇
  1983年   38篇
  1982年   38篇
  1981年   15篇
  1980年   21篇
  1979年   19篇
  1978年   12篇
  1977年   8篇
  1975年   5篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Aromatic and functional polymers with processibility derived from biobased starting materials are prerequisite considering sustainable society. Poly(2,5-benzimidazole)s are rigid-rod polymers to show ultrahigh thermal stability such as flame retardance, while usually suffer from poor solubility. Here, poly(benzimidazole-co-amide)s are synthesized from two biobased monomers, 3,4-diaminobenzoic acid and a semirigid comonomer, 4-aminohydrocinnamic acid. The copolymers with an amide composition of 80 mol% and higher are soluble in widely used polar solvents to fabricate the films keeping high flame retardance, which is comparable with popular high-performance polymers such as aromatic polyimides, polyetheretherketone, polyphenylene sulfide, etc.  相似文献   
2.
A column experiment was conducted to investigate the effect of phosphogypsum (PG) on the saline- alkalinity, and aggregate stability of bauxite residue. Results showed that: with increasing leaching time, the concentrations of saline-alkali ions decreased while the concentration increased in bauxite residue leachate; compared with CK (control group) treatment, pH, electric conductivity (EC), exchangeable sodium percentage (ESP), sodium absorption ratio (SAR), and exchangeable Na+ content of bauxite residue were reduced following PG treatment; average particle sizes in aggregates following CK and PG treatments were determined to be 155 and 193 nm, respectively. SR-μCT test results also confirmed that bauxite residue following PG treatment acquired larger aggregates and larger pore diameter. These results indicate that the PG treatment could significantly modulate the saline-alkalinity, and simultaneously enhance aggregate stability of bauxite residue, which provides a facile approach to reclaim bauxite residue disposal areas.  相似文献   
3.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
4.
LiNbO3 crystals activated by Sm3+ and co-doped with Zr4+ (Sm:Zr:LN) or Hf4+ (Sm:Hf:LN) were prepared by the Czochralski method. Detailed investigation on spectroscopic properties was conducted on the frame of Judd-Ofelt (J-O) theory. The J-O intensity parameters Ωi (i = 2, 4, 6), fluorescence branching ratios and radiative lifetime of excited level 4G5/2 were determined. Furthermore, the thermal stability of the strong orange-red emissions obtained under near-UV excitation in both crystals was evaluated. As high as 100% and 97% of integrated intensities at room temperature in Sm:Zr:LN and Sm:Hf:LN respectively were retained at 423 K, demonstrating the suppressed thermal attenuation. The temperature sensing performance based on fluorescence intensity ratio strategy was degraded at higher temperatures with relatively low sensitivities, while the shift of CIE chromaticity coordinates of Sm:Zr:LN and Sm:Hf:LN in the orange-red region was insignificant, demonstrating the color constancy with increasing temperature. With the efficient and thermally stable orange-red luminescence, Sm:Zr:LN and Sm:Hf:LN could serve as promising candidate materials for near-UV excited white light-emitting diodes.  相似文献   
5.
An ecofriendly and biodegradable porous structure was prepared from drying aqueous foams based on nano fibrillated cellulose (NFC), extracted from softwood pulp by subcritical water/CO2 treatment (SC-NFC). The primary aim of this work was to use the modified SC-NFC as stabilizer for a water-based Pickering emulsion which upon drying, yielded porous cellulosic materials, a good dye adsorbent. In order to exploit the carboxymethylated SC-NFC (CMSC-NFC, with a degree of substitution of 0.35 and a charge density of 649 μeqv/g) as a stabilizer for water-based Pickering emulsion in subsequent step, an optimized quantity of octyl amine (30 mg/g of SC-NFC) was added to make them partially hydrophobic. A series of dry foam structures were prepared by varying the concentrations of treated CMSC-NFCs and 4 wt% was found to be the optimum concentration to yield foam with high porosity (99%) and low density (0.038 g/cc) along with high compression strength (0.24 MPa), superior to the conventionally extracted NFC. The foams were applied to capture as high as 98% of methylene blue dyes, making them a potential green candidate for treating industrial effluent. In addition, the dye adsorption kinetics and isotherms were found to be well suited with second order kinetics and Langmuir isotherm models.  相似文献   
6.
Porous g-C3N4 nanosheets (PCN) were prepared by the nickel-assisted one-step thermal polymerization method.Hydrogen (H2) which was produced by the reaction between nickel (Ni) foam and ammonia (NH3) defined the structure and properties of PCN.During the formation of PCN,the participation of H2 not only enhanced the spacing between layers but also boosted the specific surface area that more active sites were exposed.Additionally,H2 promoted pores formation in the nanosheets,which was beneficial to the transfer of photons through lamellar structure and improved the absorption efficiency of visible light.Remarkably,the obtained PCN possessed better Cr(Ⅵ) photocatalytic reduction efficiency than pure g-C3N4.The reaction rate constant (k) of PCN (0.013 min-1) was approximately twice that of bare g-C3N4 (0.007 min-1).Furthermore,the effects of original pH and concentration of Cr(Ⅵ)-containing solution on removal efficiency of Cr(Ⅵ) were explored.A possible photocatalytic mechanism was proposed based on the experiments of radical scavengers and photoelectrochemical characterizations.  相似文献   
7.
Radicals are closely related to human life and health and have been widely used in biology, chemistry, functional materials, etc. However, the high reactivity, disorder, and short half-lives limit their wide applications. Therefore, it remains a great challenge to prepare stable and ordered radicals. Herein, radicals are prepared with protective umbrellas (diethylmethyleneamine, DEMA) that are integrated on the surface of 2D layered materials to isolate water and oxygen and enhance the stability of radicals. Taking 2D black phosphorus (BP) as an example: triethylamine reacts with dichloromethane to form quaternary ammonium salts with further Hoffmann elimination to produce DEMA radicals that could react with one electron of a lone pair electrons in P on the surface of BP to produce P radicals, which shows a prolonged half-life of 21 days at room temperature. First-principle calculations and electron paramagnetic resonance fitting confirm that the steric hindrance constructed by dense DEMA passivation layer acts as a protective umbrella and the 2D coupling of P radicals and other P atoms in 2D BP plane to enhance the stability and strong superexchange interaction of P radicals. Furthermore, it is a general strategy to produce stable radicals integrated on the 2D plane.  相似文献   
8.
《Journal of dairy science》2022,105(5):3926-3938
Sensory and physical properties of 2 lemon-flavored beverages with 5% and 7.5% wt/wt nonfat dry milk (NFDM) at pH 2.5 were studied during storage. The 2 beverages had similar volatile compounds, but the 5% NFDM had higher aroma and lemon flavor, with a preferred appearance by consumers due to the lower turbidity and viscosity. After 28 d of storage at 4°C, lemon flavor decreased in the 5% NFDM beverage but was still more intense than the 7.5% one. During 70 d of storage, no microorganisms were detected, and the beverages were more stable when stored at 4°C than at room temperature according to changes of physical properties measured for appearance, turbidity, color, particle size, zeta potential, rheological properties, and transmission electron microscopy morphology. Findings of the present study suggest that NFDM may be used at 5% wt/wt to produce stable acidic dairy beverages with low turbidity when stored at 4°C.  相似文献   
9.
10.
《Ceramics International》2022,48(8):11031-11042
Polyaniline (PANI) and its composite with sulphur doped reduced graphene oxide (S-RGO) have been successively synthesized via in-situ chemical oxidative polymerization of aniline in presence of 10 wt. % S-RGO nanosheets. Physico-chemical analyses of the synthesized nanomaterial was performed with various characterization techniques such as X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Atomic Force Microscopy (AFM) and Thermogravimetric analysis/Differential Scanning Calorimetry (TGA/DSC). The results interpreted from the various characterizations confirm the doping of RGO with sulphur as well as strong interaction of PANI nanofibers and S-RGO nanosheets. TG/DSC curves confirm the enhanced thermal stability of polyaniline/sulphur doped reduced graphene oxide (PANI/S-RGO) nanocomposites with heat resistance index (THRI) of 155.2 °C in comparision to pure PANI (THRI = 145.3 °C) at a filler loading of 10 wt. %. TGA validates that thermal stability of PANI/S-RGO nanocomposite improves by 6–7 °C than pure PANI in terms of weight loss percentage at a temperature of 1117 °C. However DSC analysis confirms that PANI/S-RGO retains its structural integrity and conformity to temperatures as high as 900 °C beyond which the polymer composite starts to degrade. The electromagnetic interference shielding effectiveness (EMI SE) of PANI and PANI/S-RGO nanocomposites were measured via open-ended coaxial probe set-up connected to a Vector Network Analyser (VNA) at a broadband frequency range of 1–20 GHz (1000–20000 MHz). For EMI SE measurements the various nanomaterials were incorporated into paraffin wax and made into composite pellets of thickness 5 mm by solution casting technique. The dielectric properties, electrical conductivity and EMI SE were all greatly enhanced for the PANI/S-RGO/Paraffin composite pellets. The as synthesized PANI/S-RGO/Paraffin composite pellets exhibited highest EMI SE of ?22.5 dB (>99%) as compared to ?15.89 dB of PANI/Paraffin composite pellets. The prepared composite pellets revealed an absorption dominant mechanism of shielding with highest SEA of ?14.6 dB for PANI/S-RGO/Paraffin composite pellets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号