首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72721篇
  免费   10428篇
  国内免费   4018篇
电工技术   3052篇
综合类   4087篇
化学工业   14728篇
金属工艺   4170篇
机械仪表   2721篇
建筑科学   6544篇
矿业工程   2446篇
能源动力   2531篇
轻工业   7093篇
水利工程   1647篇
石油天然气   3083篇
武器工业   590篇
无线电   9389篇
一般工业技术   7909篇
冶金工业   3224篇
原子能技术   737篇
自动化技术   13216篇
  2024年   151篇
  2023年   1391篇
  2022年   2641篇
  2021年   4186篇
  2020年   2585篇
  2019年   2504篇
  2018年   2611篇
  2017年   3399篇
  2016年   4520篇
  2015年   5140篇
  2014年   5848篇
  2013年   5750篇
  2012年   5085篇
  2011年   4663篇
  2010年   3698篇
  2009年   3599篇
  2008年   3446篇
  2007年   4594篇
  2006年   4612篇
  2005年   3786篇
  2004年   2551篇
  2003年   2419篇
  2002年   1655篇
  2001年   1119篇
  2000年   855篇
  1999年   717篇
  1998年   466篇
  1997年   416篇
  1996年   397篇
  1995年   325篇
  1994年   284篇
  1993年   240篇
  1992年   192篇
  1991年   154篇
  1990年   159篇
  1989年   128篇
  1988年   84篇
  1987年   70篇
  1986年   60篇
  1985年   64篇
  1984年   71篇
  1983年   45篇
  1982年   40篇
  1981年   43篇
  1980年   47篇
  1966年   25篇
  1964年   34篇
  1962年   64篇
  1959年   23篇
  1955年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In a narrow channel, the apparent relative viscosity of a suspension with finite-size particles is strongly dependent on its microscopic particle arrangement. Relative viscosity increases when suspended particles flow near the channel wall; thus, a suspension in a narrow channel does not always exhibit the same rheological properties even if the concentration is the same. In this study, we focus on the inertia and concentration of particles in a narrow channel and consider their effects on the microscopic particle arrangement and macroscopic suspension rheology. Two-dimensional pressure-driven suspension flow simulations were performed using a two-way coupling scheme, and normalized particle density distribution (PDD) were implemented to consider their particle arrangements. The results demonstrated that the velocity profiles for the particle suspension were changed by the Reynolds number and particle concentration because of the interactions between particles according to the power-law index. These changes affected the particle equilibrium positions in the channel, and the subsequent changes in solvent layer thickness caused changes in the macroscopic apparent viscosity. The behavior of microscopic particles played important roles in determining macroscopic rheology. Thus, we have confirmed that a normalized PDD can be used to estimate and assess the macroscopic rheology of a suspension.  相似文献   
2.
The ohmic resistance in solid oxide fuel cells (SOFCs) mainly comes from the electrolyte, which can be reduced by developing novel electrolyte materials with higher ionic conductivity and/or fabricating thin-film electrolytes. Among various kinds of thin-film fabrication technology, the physical vapor deposition (PVD) method can reduce the electrolyte thickness to a few micrometers and mitigate the issues associated with high-temperature sintering, which is necessary for wet ceramic methods. This review summarizes recent development progress in thin-film electrolytes fabricated by the PVD method, especially pulsed laser deposition (PLD) and magnetron sputtering. At first, the importance of the substrate surface morphology for the quality of the film is emphasized. After that, the fabrication of thin-film doped-zirconia and doped-ceria electrolytes is presented, then we provide a brief summary of the works on other types of electrolytes prepared by PVD. Finally, we have come to the summary and made perspectives.  相似文献   
3.
Gas diffusion layer (GDL) is one of the most important components of fuel cells. In order to improve the fuel cell performance, GDL has developed from single layer to dual layers, and then to multiple layers. However, dual or multi layers in GDL are usually prepared by layer-by-layer methods, which cost too much time, energy, and resources. In this work, we successfully developed a facile one-step method to prepare a GDL with three functional layers by utilizing the different sedimentation rates and filtration rates of short carbon fiber (CF) and carbon nanotube (CNT). The treatment temperature for this GDL is much lower than that of traditional method. The thickness of the GDL can be effectively controlled from as thin as 50 μm to more than 200 μm by simply adjusting the content of CF. The GDL with high flexibility is suitable to develop high performance flexible electronics. The fuel cell with the GDL has the maximum power density 1021 mW cm?2, which shows 19% improvement comparing to the conventional one. Therefore, this work breaks the traditional concept that GDL for fuel cells only can be prepared by very complex and high-cost procedure.  相似文献   
4.
The thermodynamics modeling of a Reiner–Philippoff-type fluid is essential because it is a complex fluid with three distinct probable modifications. This fluid model can be modified to describe a shear-thinning, Newtonian, or shear-thickening fluid under varied viscoelastic conditions. This study constructs a mathematical model that describes a boundary layer flow of a Reiner–Philippoff fluid with nonlinear radiative heat flux and temperature- and concentration-induced buoyancy force. The dynamical model follows the usual conservation laws and is reduced through a nonsimilar group of transformations. The resulting equations are solved using a spectral-based local linearization method, and the accuracy of the numerical results is validated through the grid dependence and convergence tests. Detailed analyses of the effects of specific thermophysical parameters are presented through tables and graphs. The study reveals, among other results, that the buoyancy force, solute and thermal expansion coefficients, and thermal radiation increase the overall wall drag, heat, and mass fluxes. Furthermore, the study shows that amplifying the space and temperature-dependent heat source parameters allows fluid particles to lose their cohesive force and, consequently, maximize flow and heat transfer.  相似文献   
5.
Aiming at the performance degradation of the existing presentation attack detection methods due to the illumination variation, a two-stream vision transformers framework (TSViT) based on transfer learning in two complementary spaces is proposed in this paper. The face images of RGB color space and multi-scale retinex with color restoration (MSRCR) space are fed to TSViT to learn the distinguishing features of presentation attack detection. To effectively fuse features from two sources (RGB color space images and MSRCR images), a feature fusion method based on self-attention is built, which can effectively capture the complementarity of two features. Experiments and analysis on Oulu-NPU, CASIA-MFSD, and Replay-Attack databases show that it outperforms most existing methods in intra-database testing and achieves good generalization performance in cross-database testing.  相似文献   
6.
《Ceramics International》2022,48(8):10579-10591
In present study, we report a V doping fabrication method for obtaining rod-like MgO crystals decorated with a nanoflake layer. This novel structure has only been minimally reported in literature. Pure MgO and Mg2V2O7–MgO composite materials were obtained by precipitation and impregnation methods, with vanadium added concentrations of 0–9%. The influence of V doping on crystal structure and particle morphology of MgO was investigated by scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis demonstrated that MgO has a cubic structure, while X-ray photoelectron spectroscopy (XPS) revealed that V5+ exists on the surface of MgO. The specific surface areas and pore sizes of MgO composites were calculated by BET and BJH analysis. These techniques revealed that specific surface area and pore size of MgO increased due to vanadium doping. The antibacterial effects of Mg2V2O7–MgO composite materials against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were assessed using a bacterial killing/colony-forming unit (CFU) assay and bacteriostatic ring method. Our results demonstrate that V doping dramatically improved antimicrobial properties of MgO, with 7 mol% doping inducing the best antibacterial activity. The antibacterial mechanisms of Mg2V2O7–MgO composite material were also proposed.  相似文献   
7.
益生菌可在肠道定植从而发挥抗炎或抗氧化活性,有利于宿主肠道健康。本实验研究了从新疆传统发酵乳制品中分离得到的8?株植物乳杆菌对大肠杆菌侵袭和过氧化氢刺激肠上皮细胞HT-29的保护作用。结果表明:在8?株植物乳杆菌中,植物乳杆菌35具有最高的黏附能力。植物乳杆菌35可通过取代、竞争、排阻的方式抑制大肠杆菌对HT-29细胞的黏附,抑制率分别为42.60%、59.17%、60.19%。植物乳杆菌35及其多糖可抑制大肠杆菌刺激HT-29细胞产生白细胞介素-8;同时保护HT-29细胞免受过氧化氢的损伤,增加超氧化物歧化酶、谷胱甘肽过氧化物酶活力水平并降低丙二醛含量。结论:植物乳杆菌35及其粗胞外多糖具有抑制大肠杆菌O157诱导的炎症性肠病的潜力。  相似文献   
8.
Oxygen blocking the porous transport layer (PTL) increases the mass transport loss, and then limits the high current density condition of proton exchange membrane electrolysis cells (PEMEC). In this paper, a two-dimensional transient mathematical model of anode two-phase flow in PEMEC is established by the fluid volume method (VOF) method. The transport mechanism of oxygen in porous layer is analyzed in details. The effects of liquid water flow velocity, porosity, fiber diameter and contact angle on oxygen pressure and saturation are studied. The results show that the oxygen bubble transport in the porous layer is mainly affected by capillary pressure and follows the transport mechanism of ‘pressurization breakthrough depressurization’. The oxygen bubble goes through three stages of growth, migration and separation in the channel, and then be carried out of the electrolysis cell by liquid water. When oxygen breaks through the porous layer and enters the flow channel, there is a phenomenon that the branch flow is merged into the main stream, and the last limiting throat affects the maximum pressure and oxygen saturation during stable condition. In addition, increasing the liquid water velocity is helpful to bubble separation; changing the porosity and fiber diameter directly affects the width of pore throat and the correlative capillary pressure; increasing porosity, reducing fiber diameter and contact angle can promote oxygen breakthrough and reduce the stable saturation of oxygen.  相似文献   
9.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   
10.
基于深度学习的图像超分辨率算法通常采用递归的方式或参数共享的策略来减少网络参数,这将增加网络的深度,使得运行网络花费大量的时间,从而很难将模型部署到现实生活中。为了解决上述问题,本文设计一种轻量级超分辨率网络,对中间特征的关联性及重要性进行学习,且在重建部分结合高分辨率图像的特征信息。首先,引入层间注意力模块,通过考虑层与层之间的相关性,自适应地分配重要层次特征的权重。其次,使用增强重建模块提取高分辨率图像中更精细的特征信息,以此得到更加清晰的重建图片。通过大量的对比实验表明,本文设计的网络与其他轻量级模型相比,有更小的网络参数量,并且在重建精度和视觉效果上都有一定的提升。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号