首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
在基于深度学习的图像超分辨率重建领域,通过扩大网络规模以提高性能将导致计算资源损耗增加。为此,提出了一种轻量级的基于金字塔池化注意力机制网络(light-weighted pyramid pooling-based attention network,LiPAN),该算法模型由融合注意力机制的信息蒸馏块、多层金字塔池化结构和反向注意力融合模块组成。注意力机制确保了网络对重要特征的提取,金字塔池化结构可获取更多的上下文信息,得到更准确的重建结果,蒸馏结构的引入可有效地提高网络性能并减少网络参数。与目前主流的轻量级网络模型相比,提出的LiPAN模型在Set5、Set14、BSD100及Urban100四个公共数据集分别进行2倍、3倍和4倍下采样重建并定量评估,获得最优峰值信噪比和结构相似度。由此表明,提出的LiPAN在网络模型参数与当前主流的轻量级网络相当的情况下,具有更优的超分辨率重建性能。  相似文献   

2.
目的 现有医学图像超分辨率方法主要针对单一模态图像进行设计,然而在磁共振成像(magnetic resonance imaging, MRI)技术的诸多应用场合,往往需要采集不同成像参数下的多模态图像。针对单一模态的方法无法利用不同模态图像之间的关联信息,很大程度上限制了重建性能。目前超分辨率网络模型参数量往往较大,导致计算和存储代价较高。为此,本文提出了一个轻量级残差密集注意力网络,以一个统一的网络模型同时实现多模态MR图像的超分辨率重建。方法 首先将不同模态的MR图像堆叠后输入网络,在低分辨率空间中提取共有特征,之后采用设计的残差密集注意力模块进一步精炼特征,再通过一个亚像素卷积层上采样到高分辨率空间,最终分别重建出不同模态的高分辨率图像。结果 本文采用MICCAI (medical image computing and computer assisted intervention) BraTS (brain tumor segmentation) 2019数据集中的T1和T2加权MR图像对网络进行训练和测试,并与8种代表性超分辨率方法进行对比。实验结果表明,本文方法可以取得优于...  相似文献   

3.
针对现有深度学习医学图像超分辨率重建算法因网络参数量大导致计算复杂度过高、网络难以训练的问题,提出一种采用伪3D卷积的轻量级密集残差连接3D卷积神经网络(P3DSRNet)模型.首先利用密集残差块拓宽残差块中卷积层的通道,将更多的特征信息传送到激活函数,使网络中浅层图像特征更容易地传播到高层,增强医学图像超分辨率的表达...  相似文献   

4.
基于深度学习的图像超分辨率重建算法的性能需求导致急剧增加的参数量与高额的计算成本,这限制超分辨率重建在移动设备上的应用.针对此问题,文中提出轻量化逆可分离残差信息蒸馏网络的图像超分辨率重建算法.首先,设计渐进可分离蒸馏重洗模块,进行多重信息蒸馏,在提取多层次特征的同时保持模型轻量化,使用多个特征提取连接,学习更具区别性的特征表示,以便网络能从蒸馏中获得更多有益信息.然后,设计对比感知坐标注意力模块,充分利用通道感知与位置敏感信息,增强特征选择能力.最后,提出逐步补偿残差连接方式,提高浅层特征的利用率,补偿网络的纹理细节特征.实验表明,文中算法在模型复杂性与重建性能之间实现较好的均衡,重建的高分辨率图像主客观质量都很优秀.  相似文献   

5.
孙超文  陈晓 《自动化学报》2021,47(7):1689-1700
针对现有图像超分辨率重建方法恢复图像高频细节能力较弱、特征利用率不足的问题, 提出了一种多尺度特征融合反投影网络用于图像超分辨率重建. 该网络首先在浅层特征提取层使用多尺度的卷积核提取不同维度的特征信息, 增强跨通道信息融合能力; 然后,构建多尺度反投影模块通过递归学习执行特征映射, 提升网络的早期重建能力; 最后,将局部残差反馈结合全局残差学习促进特征的传播和利用, 从而融合不同深度的特征信息进行图像重建. 对图像进行×2 ~ ×8超分辨率的实验结果表明, 本方法的重建图像质量在主观感受和客观评价指标上均优于现有图像超分辨率重建方法, 超分辨率倍数大时重建性能相比更优秀.  相似文献   

6.
目的 红外图像在工业中发挥着重要的作用。但是由于技术原因,红外图像的分辨率一般较低,限制了其普遍适用性。许多低分辨率红外传感器都和高分辨率可见光传感器搭配使用,一种可行的思路是利用可见光传感器捕获的高分辨率图像,辅助红外图像进行超分辨率重建。方法 本文提出了一种使用高分辨率可见光图像引导红外图像进行超分辨率的神经网络模型,包含两个模块:引导Transformer模块和超分辨率重建模块。考虑到红外和可见光图像对一般存在一定的视差,两者之间是不完全对齐的,本文使用基于引导Transformer的信息引导与融合方法,从高分辨率可见光图像中搜索相关纹理信息,并将这些相关纹理信息与低分辨率红外图像的信息融合得到合成特征。然后这个合成特征经过后面的超分辨率重建子网络,得到最终的超分辨率红外图像。在超分辨率重建模块,本文使用通道拆分策略来消除深度模型中的冗余特征,减少计算量,提高模型性能。结果 本文方法在FLIR-aligned数据集上与其他代表性图像超分辨率方法进行对比。实验结果表明,本文方法可以取得优于对比方法的超分辨率性能。客观结果上,本文方法比其他红外图像引导超分辨率方法在峰值信噪比(pea...  相似文献   

7.
董彪  张生  韩韧 《信息与控制》2023,(5):669-678+688
针对当前基于深度学习图像超分辨率重建方法模型规模大、重建效率低等问题,提出了一种能够获得性能和网络规模优越平衡的图像超分辨率重建网络。首先,利用局部更宽残差块结构,设计了两级残差特征提取模块;然后,以该模块为基础,使用特征图循环传递的方式来构造深层特征提取网络,这可以使得多个网络层共享参数,提高了网络的效率;最后,改进了以往惯常使用的上采样方法,为了弥补分辨率扩张带来高频信息的损失,采用多尺度联合学习的机制构建上采样模块。实验结果表明,与相同类型网络相比,本文方法在维持网络规模较低时,获得了优秀的性能指标和视觉效果。  相似文献   

8.
卷积神经网络中的层次特征可以为图像重建提供重要信息。然而,现有的一些图像超分辨率重建方法没有充分利用卷积网络中的层次特征。针对该问题,本文提出一种基于空间注意力残差网络的模型(Residual Network Based on Spatial Attention, SARN)。具体来说,首先设计一种空间注意力残差模块(Spatial Attention Residual Block, SARB),将增强型空间注意力模块(Enhanced Spatial Attention, ESA)融入残差模块中,网络可以获得更有效的高频信息;其次融入特征融合机制,将网络各层获得的特征进行融合,提高网络中层次特征的利用率;最后,将融合后特征输入重建网络,得到最终的重建图像。实验结果表明,该模型无论在客观指标上,还是主观视觉效果上均优于对比算法,这说明本文提出的模型可以有效地利用图像中的层次特征,从而获得较好的超分辨率重建效果。  相似文献   

9.
基于深度卷积神经网络算法实现网络图像超分辨率重建技术,为满足图像的超分辨率精度检测和构建需求,通过构建图像融合技术来实现图像重建架构,形成以机器人视觉系统数据为主体的控制模块,实现对网络图像超分辨率的图像融合分析的目标,完成深度卷积神经网络图像重建。在深度卷积神经网络图像的构建过程中,注意神经网络输出数据决策方案和图像的自适应预置模块设计,分析深度卷积神经网络的各层节点数,平衡图像分辨率数据深度卷积过程中的信息损失量,提升图像分辨率数据的重建精度。  相似文献   

10.
针对现有基于深度学习的图像超分辨率重建方法,其对细节纹理恢复过程中容易产生伪纹理,并且没有充分利用原始低分辨率图像丰富的局部特征层信息的问题,提出一种基于注意力生成对抗网络的超分辨率重建方法.该方法中生成器部分是通过注意力递归网络构成,其网络中还引入了密集残差块结构.首先,生成器利用自编码结构提取图像局部特征层信息,并提升分辨率;然后,通过判别器进行图像修正,最终将图像重建为高分辨率图像.实验结果表明,在多种面向峰值信噪比超分辨率评价方法的网络中,所设计的网络表现出了稳定的训练性能,改善了图像的视觉质量,同时具有较强的鲁棒性.  相似文献   

11.
图像超分辨率重建旨在依据低分辨率图像重建出接近真实的高分辨率图像,现有基于卷积神经网络的图像超分辨率重建方法存在网络参数量大、重建速度慢等问题,从而限制其在内存资源小的终端设备上的应用。提出一种基于深度可分离卷积的轻量级图像超分辨率重建网络,利用深度可分离卷积提取图像的特征信息,减少网络的参数量,采用对比度感知通道注意力机制获取图像的对比度信息,并将其作为全局信息,同时对提取特征的不同通道权重进行重新分配,增强重建图像的细节纹理信息。在此基础上,采用亚像素卷积对图像特征进行上采样操作,提高整体重建图像质量。实验结果表明,当放大倍数为2、3和4时,该网络的参数量分别为140 000、147 000和152 000,重建时间为0.020 s、0.014 s和0.011 s,相比VDSR、RFDN、IDN等网络,在保证重建效果的前提下能够有效减少网络参数量。  相似文献   

12.
梁敏  王昊榕  张瑶  李杰 《计算机应用》2021,41(5):1438-1444
针对深层网络架构的图像超分辨率重建任务中存在网络参数多、计算复杂度高等问题,提出了一种基于加速残差网络的图像超分辨率重建方法。首先,构建一个残差网络对低分辨率图像与高分辨率图像之间的高频残差信息进行重建,以减少冗余信息的深层网络传输过程,提高重建效率;然后,通过特征收缩层对提取的低分辨率特征图进行降维,从而以较少的网络参数实现快速映射;之后,对高分辨率特征图通过特征扩展层进行升维,从而以较丰富的信息重建高频残差信息;最后,将残差与低分辨率图像求和得到重建的高分辨率图像。实验结果表明,该方法取得的峰值信噪比(PSNR)及结构相似性(SSIM)均值结果较基于卷积神经网络的图像超分辨率(SRCNN)取得的结果分别提升了0.57 dB和0.013 3,较基于中间层监督卷积神经网络的图像超分辨率重建(ISCNN)取得的结果分别提升了0.45 dB和0.006 7;在重建速度方面,以数据集Urban100为例,较现有方法提高了1.5~42倍。此外,将该方法应用于运动模糊图像的超分辨率重建时,获得了优于超深卷积神经网络的图像超分辨率(VDSR)的性能。所提方法以较少的网络参数快速获得较好的重建质量,并且为图像超分辨率重建提供了新的思路。  相似文献   

13.
陈一鸣  周登文 《自动化学报》2022,48(8):1950-1960
深度卷积神经网络显著提升了单图像超分辨率的性能. 通常, 网络越深, 性能越好. 然而加深网络往往会急剧增加参数量和计算负荷, 限制了在资源受限的移动设备上的应用. 提出一个基于轻量级自适应级联的注意力网络的单图像超分辨率方法. 特别地提出了局部像素级注意力模块, 给输入特征的每一个特征通道上的像素点都赋以不同的权值, 从而为重建高质量图像选取更精确的高频信息. 此外, 设计了自适应的级联残差连接, 可以自适应地结合网络产生的层次特征, 能够更好地进行特征重用. 最后, 为了充分利用网络产生的信息, 提出了多尺度全局自适应重建模块. 多尺度全局自适应重建模块使用不同大小的卷积核处理网络在不同深度处产生的信息, 提高了重建质量. 与当前最好的类似方法相比, 该方法的参数量更小, 客观和主观度量显著更好.  相似文献   

14.
针对多数单帧图像超分辨率(single image super-resolution,SISR)重建方法存在的特征信息发掘不充分、特征图各通道之间的相互依赖关系难以确定以及重建高分辨率(high resolution,HR)图像时存在重构误差等问题,提出了基于深度残差反投影注意力网络的图像超分辨率(SR)算法。即利用残差学习的思想缓解训练难度和充分发掘图像的特征信息,并使用反投影学习机制学习高低分辨图像之间的相互依赖关系,此外引入了注意力机制动态分配各特征图以不同的注意力资源从而发掘更多的高频信息和学习特征图各通道之间的依赖关系。实验结果表明了所提方法相比于多数单帧图像超分辨率方法,不仅在客观指标方面得到了显著的提升,而且重建的预测图像也具有更加丰富的纹理信息。  相似文献   

15.
基于深度网络的单帧图像超分辨(SISR)方法为目前SR研究热点,但是多数该类方法在特征提取时主要侧重在网络深度结构的探索,忽略了中间空间特征层之间的相似性,并且在重构时忽略了特征层之间的特征差异性.针对上述问题,提出了基于空间特征变换与反投影重构的渐进式网络.该方法的主要特征是,在图像特征提取时对特征空间进行特征仿射变换,从而获得渐进式特征和空间变换特征,增加特征层间的不同相似性.在图像重构阶段,重构模块采用多尺度反投影的策略融合了图像多源特征,从而使得其模块更加注重特征之间的差异性.实验结果表明,相比大多数超分辨算法,所提方法在图像超分辨重建时PSNR/SSIM等评估指标均有较大提升,且重构图像的纹理信息也更加丰富.  相似文献   

16.
针对安防监控场景中获取的人脸图像质量不佳、细节信息丢失导致的人脸识别准确率低下的问题,提出一种基于超分辨率重建的低分辨率人脸识别算法。该算法包括超分辨率重建和人脸识别两个子网络,分别实现低分辨率人脸图像的超分辨率重建和人脸特征的提取。首先通过增加超分辨率重建子网络激活函数前的特征图数量实现广泛激活,保证信息流的有效传递,重建出包含更多细节信息的高分辨率人脸图像;然后在训练时结合图像内容损失和身份损失,在重建图像的同时保留更多身份信息,使得提取到的人脸特征具有更强的辨别性。实验结果表明,该算法提升了低分辨率人脸识别的准确率,在监控人脸数据集QMUL-SurFace上的性能优于传统算法。  相似文献   

17.
目的 针对以往基于深度学习的图像超分辨率重建方法单纯加深网络、上采样信息损失和高频信息重建困难等问题,提出一种基于多尺度特征复用混合注意力网络模型用于图像的超分辨率重建。方法 网络主要由预处理模块、多尺度特征复用混合注意力模块、上采样模块、补偿重建模块和重建模块5部分组成。第1部分是预处理模块,该模块使用一个卷积层来提取浅层特征和扩张特征图的通道数。第2部分是多尺度特征复用混合注意力模块,该模块加入了多路网路、混合注意力机制和长短跳连接,以此来进一步扩大特征图的感受野、提高多尺度特征的复用和加强高频信息的重建。第3部分是上采样模块,该模块使用亚像素方法将特征图上采样到目标图像尺寸。第4部分是补偿重建模块,该模块由卷积层和混合注意力机制组成,用来对经过上采样的特征图进行特征补偿和稳定模型训练。第5部分是重建模块,该模块由一个卷积层组成,用来将特征图的通道数恢复至原来数量,以此得到重建后的高分辨率图像。结果 在同等规模模型的比较中,以峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structural similarity index measure,SSIM)作为评价指标来评价算法性能,在Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100的基准测试集上进行测试。当缩放尺度因子为3时,各测试集上的PSNR/SSIM依次为34.40 dB/0.927 3,30.35 dB/0.842 7,29.11 dB/0.805 2和28.23 dB/0.854 0,相比其他模型有一定提升。结论 量化和视觉的实验结果表明,本文模型重建得到的高分辨率图像不仅在重建边缘和纹理信息有很好的改善,而且在PSNR和SSIM客观评价指标上也有一定的提高。  相似文献   

18.
针对基于深度神经网络的图像超分辨率重建算法在特征提取过程中容易丢失特征信息,导致重建图像缺少纹理和边缘细节等问题,提出一种多级信息补偿的U型网络图像超分辨率重建算法.首先设计一个用于图像超分辨率重建的U型网络,该网络通过下通道分支对输入特征进行多层级特征提取和通道压缩,通过底层模块对压缩后的特征进行融合并提取不同通道的相关特征,通过上通道分支对压缩后的相关特征进行多层次特征提取和通道恢复;然后设计多级信息补偿模型,对U型网络的通道压缩过程中丢失的信息和通道恢复过程中难以恢复的信息进行补偿;最后在不同放大倍数下的Set5、Set14、BSD100和Urban100测试集上对所提算法和主流算法进行对比测试分析,实验结果表明所提算法相比主流算法实现了在峰值信噪比(PSNR)/结构相似度(SSIM)指标和视觉效果上的巨大提升.  相似文献   

19.
目的 将低分辨率(low-resolution,LR)图像映射到高分辨率(high-resolution,HR)图像是典型的不适定恢复问题,即输出的HR图像和输入的LR图像之间的映射是多对一的,这意味着仅通过增加网络深度来确定HR图像与LR图像之间的特定映射关系是非常困难的。针对该问题,本文提出一种基于多监督光滑化损失函数的图像超分辨率方法。方法 该方法主体由LR图像上采样通道和HR图像下采样通道两部分组成。各通道分为两个阶段,每个阶段均包括浅层特征提取模块、基于迭代采样错误反馈机制的采样模块、全局特征融合模块和图像重建模块。将LR图像上采样通道第1阶段结果与HR图像下采样通道第1阶段结果对比,然后将HR原图像和HR图像下采样通道第2阶段结果作为约束构成多监督,使映射函数空间尽可能精确,并将多监督损失函数光滑化保证梯度在全局范围内传递。结果 在基准测试集Set5、Set14、BSD100(Berkeley segmentation dataset)、Urban100(urban scenes dataset)、Manga109(109 manga volumes dataset)数据集上进行测试,并与Bicubic、SRCNN (super-resolution convolutional neural network)、FSRCNN (fast super-resolution convolutional neural network)、LapSRN (Laplacian pyramid super-resolution network)、VDSR (very deep super-resolution convolutional networks)、DBPN (deep back-projection networks for super-resolution)和DRN (dual regression networks)等方法的实验结果进行对比。当放大因子为4时,本文算法的峰值信噪比分别为32.29 dB、28.85 dB、27.61 dB、26.16 dB和30.87 dB;在重建图像的可视化分析方面,本文算法相较于对比算法具有更加丰富的纹理和清晰的轮廓。结论 实验结果表明,基于多监督光滑化损失函数方法的图像重建结果与其他超分辨率主流算法相比,在重建图像质量和高频细节处理方面均有所提高。  相似文献   

20.
对于图像超分辨率重建而言,通常会将图像的整体信息作为研究对象。然而图像本身含有的大量结构信息并没有得到充分利用。为了提高超分辨率重建的效果,实现对不同特征信息的利用,提出了一种融合邻域回归和稀疏表示的图像超分辨率重构算法。依据图像所具有的低秩性对高分辨率图像进行分解,获得高分辨率图像的低秩部分和稀疏部分;将对应的低分辨率图像与高分辨率图像的低秩部分和稀疏部分进行训练,学习得到对应的特征字典;基于高分辨率图像的低秩部分和稀疏部分分别基于稀疏表示和邻域嵌入进行高分辨率重构;基于低秩矩阵恢复理论,融合邻域回归和稀疏表示重构的高分辨率图像,得到最终的高分辨率图像。在测试集Set5和Set14上将提出的算法与几种经典算法进行对比实验,可视化和量化结果均表明,相比传统超分辨率算法,提出的算法在PSNR和SSIM都有很好的提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号