首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14784篇
  免费   1966篇
  国内免费   718篇
电工技术   672篇
技术理论   1篇
综合类   1401篇
化学工业   1435篇
金属工艺   388篇
机械仪表   901篇
建筑科学   1965篇
矿业工程   420篇
能源动力   1554篇
轻工业   941篇
水利工程   1243篇
石油天然气   369篇
武器工业   166篇
无线电   948篇
一般工业技术   1577篇
冶金工业   1136篇
原子能技术   154篇
自动化技术   2197篇
  2024年   45篇
  2023年   270篇
  2022年   505篇
  2021年   610篇
  2020年   669篇
  2019年   615篇
  2018年   511篇
  2017年   539篇
  2016年   691篇
  2015年   712篇
  2014年   936篇
  2013年   1050篇
  2012年   1036篇
  2011年   1299篇
  2010年   879篇
  2009年   884篇
  2008年   817篇
  2007年   893篇
  2006年   777篇
  2005年   658篇
  2004年   508篇
  2003年   488篇
  2002年   421篇
  2001年   309篇
  2000年   222篇
  1999年   174篇
  1998年   153篇
  1997年   106篇
  1996年   92篇
  1995年   92篇
  1994年   90篇
  1993年   58篇
  1992年   55篇
  1991年   37篇
  1990年   26篇
  1989年   28篇
  1988年   25篇
  1987年   18篇
  1986年   18篇
  1985年   9篇
  1984年   9篇
  1982年   9篇
  1981年   6篇
  1964年   10篇
  1961年   8篇
  1960年   6篇
  1959年   9篇
  1957年   12篇
  1955年   6篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
1.
Fluid sloshing usually causes serious safety issues on the dynamic stability and propellant thermal management during the powered-flight phase of launch vehicle. With the wide using of cryogenic propellants, the coupled thermo-mechanical performance during fluid sloshing becomes more prominent. In the present study, one numerical model is established to simulate fluid sloshing by using the VOF method coupled with the mesh motion treatment. The phase change occurring within the tank is considered. Both the experimental validation and mesh sensitivity analysis are made. It shows that present numerical model is acceptable. Based on the developed numerical model, the effect of different super gravity accelerations on fluid sloshing hydrodynamic characteristic is numerically researched. The fluid pressure variation, the sloshing force and sloshing moment, the interface dynamic response and the interface shape variation are investigated, respectively. It shows that the gravity acceleration has caused obvious influences on fluid sloshing characteristic. When the gravity acceleration is higher than 4g0, fluid sloshing becomes more obvious and must be paid enough attention. With some valuable conclusions obtained, the present work is of great significance for in-depth understanding of fluid sloshing mechanism.  相似文献   
2.
Based on the new process named “Combination Method” for metallurgy and separation of Baotou mixed rare earth concentrate (BMREC), the aim of this paper is to clearly elucidate the phase change behavior of BMREC without additives during oxidative roasting at 450–800 °C. The results indicate that the bastnaesite in BMREC is decomposed at 450–550 °C, the weight loss is about 10.3 wt%, and the activation energy (E) is 144 kJ/mol. The bastnaesite in BMREC is decomposed into rare earth fluoride, rare earth oxides (La2O3, Ce7O12, Pr6O11 and Nd2O3), and CO2, particularly, with the increase of roasting temperature, bastnaesite in BMREC is more completely decomposed into LaF3, which causes a decrease in leaching rate of La during the HCl leaching process. Additionally, the maximum cerium oxidation efficiency reaches about 60 wt% when the roasting temperature is equal to or above 500 °C, and the oxidation reaction rate of cerium increases with the increasing roasting temperature.  相似文献   
3.
An acoustic emission (AE) experiment was carried out to explore the AE location accuracy influenced by temperature. A hollow hemispherical specimen was used to simulate common underground structures. In the process of heating with the flame, the pulse signal of constant frequency was stimulated as an AE source. Then AE signals received by each sensor were collected and used for comparing localization accuracy at different temperatures. Results show that location errors of AE keep the same phenomenon in the early and middle heating stages. In the later stage of heating, location errors of AE increase sharply due to the appearance of cracks. This provides some beneficial suggestions on decreasing location errors of structural cracks caused by temperature and improves the ability of underground structure disaster prevention and control.  相似文献   
4.
Ge2Sb2Tes is the most widely utilized chalcogenide phase-change material for non-volatile photonic applications,which undergoes amorphous-cubic and cubic-hexagonal phase transition under external excitations.However,the cubic-hexagonal optical contrast is negligible,only the amorphous-cubic phase transition of Ge2Sb2Te5 is available.This limits the optical switching states of traditional active dis-plays and absorbers to two.We find that increasing structural disorder difference of cubic-hexagonal can increase optical contrast close to the level of amorphous-cubic.Therefore,an amorphous-cubic-hexagonal phase transition with high optical contrast is realized.Using this phase transition,we have developed display and absorber with three distinct switching states,improving the switching perfor-mance by 50%.Through the combination of first-principle calculations and experiments,we reveal that the key to increasing structural disorder difference of amorphous,cubic and hexagonal phases is to intro-duce small interstitial impurities(like N)in Ge2Sb2Tes,rather than large substitutional impurities(like Ag)previously thought.This is explained by the formation energy and lattice distortion.Based on the impurity atomic radius,interstitial site radius and formation energy,C and B are also potential suit-able impurities.In addition,introducing interstitial impurities into phase-change materials with van der Waals gaps in stable phase such as GeSb4Te7,GeSb2Te4,Ge3Sb2Te6,Sb2Te3 will produce high optical con-trast amorphous-metastable-stable phase transition.This research not only reveals the important role of interstitial impurities in increasing the optical contrast between metastable-stable phases,but also proposes varieties of candidate matrices and impurities.This provides new phase-change materials and design methods for non-volatile optical devices with multi-switching states.  相似文献   
5.
Phase change memory (PCM) is an emerging non-volatile data storage technology concerned by the semiconductor industry. To improve the performances, previous efforts have mainly focused on partially replacing or doping elements in the flagship Ge-Sb-Te (GST) alloy based on experimental “trial-and-error” methods. Here, the current largest scale PCM materials searching is reported, starting with 124 515 candidate materials, using a rational high-throughput screening strategy consisting of criteria related to PCM characteristics. In the results, there are 158 candidates screened for PCM materials, of which ≈68% are not employed. By further analyses, including cohesive energy, bond angle analyses, and Born effective charge, there are 52 materials with properties similar to the GST system, including Ge2Bi2Te5, GeAs4Te7, GeAs2Te4, so on and other candidates that have not been reported, such as TlBiTe2, TlSbTe2, CdPb3Se4, etc. Compared with GST, materials with close cohesive energy include AgBiTe2, TlSbTe2, As2Te3, TlBiTe2, etc., indicating possible low power consumption. Through further melt-quenching molecular dynamic calculation and structural/electronic analyses, Ge2Bi2Te5, CdPb3Se4, MnBi2Te4, and TlBiTe2 are found suitable for optical/electrical PCM applications, which further verifies the effectiveness of this strategy. The present study will accelerate the exploration and development of advanced PCM materials for current and future big-data applications.  相似文献   
6.
Temperature is one of the critical factors affecting gene expression in bacteria. Despite the general interest in the link between bacterial phenotypes and environmental temperature, little is known about temperature-dependent gene expression in plant pathogenic Pectobacterium atrosepticum, a causative agent of potato blackleg and tuber soft rot worldwide. In this study, twenty-nine P. atrosepticum SCRI1043 thermoregulated genes were identified using Tn5-based transposon mutagenesis coupled with an inducible promotorless gusA gene as a reporter. From the pool of 29 genes, 14 were up-regulated at 18 °C, whereas 15 other genes were up-regulated at 28 °C. Among the thermoregulated loci, genes involved in primary bacterial metabolism, membrane-related proteins, fitness-corresponding factors, and several hypothetical proteins were found. The Tn5 mutants were tested for their pathogenicity in planta and for features that are likely to remain important for the pathogen to succeed in the (plant) environment. Five Tn5 mutants expressed visible phenotypes differentiating these mutants from the phenotype of the SCRI1043 wild-type strain. The gene disruptions in the Tn5 transposon mutants caused alterations in bacterial generation time, ability to form a biofilm, production of lipopolysaccharides, and virulence on potato tuber slices. The consequences of environmental temperature on the ability of P. atrosepticum to cause disease symptoms in potato are discussed.  相似文献   
7.
《Ceramics International》2022,48(4):4722-4731
In recent years, phase change material emulsions (PCMEs) with enhanced energy storage capacities and good flow characteristics have drawn significant attention. However, due to the thermodynamically unstable nature and tiny particle confinement, the nanomaterial modification strategies at PCM/water interface to improve stabilities and reduce supercooling of nano-sized PCMEs (NPCMEs) are very limited and challenging. Herein, we report a facile strategy for constructing MXene-decorated NPCME with good stability, little supercooling, and high thermal conductivity by self-assembly of MXene nanosheets at PCM/water interface. The concentrations of MXene have great influences on the average droplet diameters, stabilities, and thermophysical properties of the NPCMEs. The results show that the PCMs have been well dispersed into the water in the form of quasi-spherical droplets, with average droplet diameters of 242–805 nm. The thermal conductivity of 10 wt% n-tetradecane/water NPCME containing 9 mg ml-1 MXene is 0.693 W m-1·K-1, achieving an enhancement by 15.5%, as compared to that of water. Besides, the MXene-decorated paraffin/water NPCMEs exhibit little supercooling and enhanced heat storage capacities. More importantly, this facile self-assembly strategy opens a new platform for preparing high-performance NPCMEs, which can be used as novel heat transfer fluids for thermal energy storage systems.  相似文献   
8.
In view of the shortcomings of silicon micro acceleration sensor based on piezoresistive effect and capacitance principle, such as temperature drift, low resolution and poor anti-interference ability, a fuze acceleration sensor based on dual SAW devices is proposed. The sensor adopts a dual saw device structure, one is coated with a sensitive film for measurement, the other is an uncoat- ed reference channel for compensation of environmental temperature, pressure, humidity and other factors. The experimental results show that the maximum linear error is only 1.6%, the sensitivity is 54.3Hz/g, and the maximum hysteresis error is less than 1%. Compared with piezoresistive accelerometer and capacitive accelerometer, the linear error of the accelerometer is small, the sensitivi- ty is high, and it has strong anti-interference ability.  相似文献   
9.
The solar energy utilization in built environment has been limited due to its low heat flux, uneven distribution in time and space and temporal difference in day and night. The phase change materials have been used to collect the fluctuant solar energy to form a stable energy source for the terminal equipment of the buildings. In this study, the hybrid organic phase change materials was prepared for the capillary radiant heating system which formed a cascade utilization of solar energy. Firstly, lauric acid and stearic acid were selected as the basic organic phase change materials and the binary equilibrium phase diagram was completed based on the method of step cooling curve according to the experimental tests data. The results showed that the phase transition temperature of the mixed acid at the lowest eutectic point was 31.2℃ and the latent heat value was 264.3 kJ/kg when the mass mixing ratio was 70% for lauric acid and 30% for stearic acid. Secondly, the expanded graphite was used as an additive to enwrap the mixed acid and enhance the heat conductivity. The experimental results showed that when the mass proportion of expanded graphite in the mixed acid was 10%, the mixed acid could be completely enclosed by expanded graphite and the stability of melting and solidification was optimal. Additionally, the phase transition temperature of the hybrid phase change material was 31.5℃ and the latent heat value was 217.4 kJ/kg. The novel hybrid phase change material has a lower eutectic point and a higher latent heat of phase change, so it has a large application space and is quite suitable for the cascade utilization of solar energy with capillary network heating system.  相似文献   
10.
In this work, an experimental study of melting heat transfer of nano-enhanced phase change materials(NePCM) in a differentially-heated rectangular cavity was performed. Two height-to-width aspect ratios of the cavity, i.e., 0.9 and 1.5, were investigated. The model Ne PCM samples were prepared by dispersing graphene nanoplatelets(GNP) into 1-tetradecanol, having a nominal melting point of 37℃, at loadings up to 3 wt.%. The viscosity was found to have a more than 10-fold increase at the highest loading of GNP. During the melting experiments, the wall superheat at the heating boundary was set to be 10℃ or 30℃. It was shown that with increasing the loading of GNP, both the heat storage and heat transfer rates during melting decelerate to some extent, at all geometrical and thermal configurations. This suggested that the use of NePCM in such cavity may not be able to enhance the heat storage rate due to the dramatic growth in viscosity, which deteriorates significantly natural convective heat transfer during melting to overweigh the enhanced heat conduction by only a decent increase in thermal conductivity. This also suggested that the numerically predicted melting accelerations and heat transfer enhancements, as a result of the increased thermal conductivity, in the literature are likely overestimated because the negative effects due to viscosity growth are underestimated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号