首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261970篇
  免费   19318篇
  国内免费   11490篇
电工技术   10491篇
技术理论   16篇
综合类   24084篇
化学工业   23459篇
金属工艺   28397篇
机械仪表   21308篇
建筑科学   55351篇
矿业工程   8168篇
能源动力   5964篇
轻工业   10420篇
水利工程   6365篇
石油天然气   9952篇
武器工业   2581篇
无线电   12988篇
一般工业技术   28032篇
冶金工业   18911篇
原子能技术   1567篇
自动化技术   24724篇
  2024年   406篇
  2023年   2881篇
  2022年   5477篇
  2021年   6694篇
  2020年   7013篇
  2019年   5456篇
  2018年   5068篇
  2017年   6804篇
  2016年   7456篇
  2015年   8215篇
  2014年   17217篇
  2013年   14418篇
  2012年   18468篇
  2011年   20464篇
  2010年   16490篇
  2009年   17251篇
  2008年   15054篇
  2007年   18350篇
  2006年   16165篇
  2005年   13961篇
  2004年   11409篇
  2003年   10458篇
  2002年   8608篇
  2001年   7205篇
  2000年   6011篇
  1999年   4855篇
  1998年   3868篇
  1997年   3360篇
  1996年   2796篇
  1995年   2265篇
  1994年   1967篇
  1993年   1346篇
  1992年   1145篇
  1991年   901篇
  1990年   678篇
  1989年   577篇
  1988年   427篇
  1987年   256篇
  1986年   165篇
  1985年   187篇
  1984年   189篇
  1983年   150篇
  1982年   177篇
  1981年   68篇
  1980年   122篇
  1979年   44篇
  1978年   25篇
  1976年   17篇
  1975年   20篇
  1959年   31篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
为了减轻汽车重量,提高燃油消耗,研制了高强度钢帘线用线材。然而,开发高强度钢帘线的难点是必须同时获得高强度和良好的塑性。为了解决这一问题,通过分析拉丝过程中钢丝组织和力学性能的变化,研究了拉丝过程中的分层机理,提高了拉丝的塑性。采用1.0%C过共析钢和优化的拉拔工艺,在实验室可获得4400 MPa级钢帘线。  相似文献   
2.
Microbiologically influenced corrosion induced by bacteria has been studied for many years. Corrosion is known to be sensitive to the presence of microalgae, such as Phaeodactylum tricornutum. However, the life activity of P. tricornutum that influences the general and localized corrosion of carbon steel is not fully understood. The current study uses a combination of immersion tests and electrochemical experiments with a detailed surface characterization to reveal the naturally formed corrosion products with/without the presence of P. tricornutum. The results show that samples suffer from pitting corrosion and the averaged pit depths are approximately 15 μm under a light–dark cycle condition or a 24-h constant light condition. Meanwhile, the corrosion products are mainly comprised of γ-FeOOH and Fe3O4 in a constant light condition. However, γ-FeOOH, Fe3O4, and FeCO3 are found in a light–dark cycle. This study proposes the fundamental mechanisms of the effect of P. tricornutum life activities on the corrosion performance of Q235 carbon steel, to fulfill the knowledge gaps of the presence of microalgae inducing the general and pitting corrosion of carbon steel.  相似文献   
3.
A new aqueous slurry-based laminated object manufacturing process for porous ceramics is proposed: firstly, an organic mesh sheet is pre-paved as a pore-forming template before slurry layer scraping; secondly, the 2D pattern is built with laser outline cutting of the dried mesh–ceramic composite layer; finally, the pore structure is formed after degreasing and sintering. Alumina parts with porosities of 51.5 %, round hole diameters of 80 ± 5 μm were fabricated using 70 wt. % solid content slurry and 100 mesh nylon net. Using an organic mesh as the framework and template not only reduces the risk of damage of the green body but also ensures the regularity, uniformity and connectivity of the micron scaled pore network. The layer-by-layer drying method avoids the delamination phenomenon and improves the paving density. The new method can realize the flexible design of the pore structure by using various organic mesh templates.  相似文献   
4.
In this study, chemically bonded phosphate ceramic coatings (CBPCCs) with different contents of aluminum phosphate (AP) are prepared on stainless steel (AISI 304L). Differential scanning calorimetry, X-ray diffraction, contact angle test, and a tribocorrosion experiment are carried out to clarify the role of AP in the tribocorrosion performance of CBPCCs. The results show that, with the increase in the AP content, the enthalpy of curing increases because of the greater formation of the bonding phase AlPO4. Both in static corrosion and in tribocorrosion, the corrosion current density of CBPCCs achieves the lowest value when the weight ratio of AP to polytetrafluoroethylene is about 0.78. Additionally, the influence mechanism of AP on tribocorrosion is clarified. AlPO4 from the reaction between AP and Al2O3 has excellent mechanical properties and can enhance the wear resistance of CBPCCs by reducing the mechanical wear and the increased wear due to corrosion. The alumina particles wrapped by AlPO4 can form a dense and smooth surface and change the direction of electrolyte propagation, which leads to the increase in the tribocorrosion resistance of CBPCCs.  相似文献   
5.
ABSTRACT

The hydrophobic polyether sulfone membranes were prepared by the sol-gel method to be applied in an air gap membrane distillation setup for desalination. The surface modifications were carried out using Trimethylsilyl chloride (TMSCl) and Methyltrimethoxysilane (MTMS) solutions. The membranes were characterized using Attenuated Total Reflection Infrared (ATR-IR) spectroscopy, Scanning Electron Microscopy (SEM), and Optical Contact Angle (OCA) methods. The effects of membrane preparation as well as operating conditions such as temperature difference, salt concentration, feed rotation speed, and cold-side temperature on membrane performance were investigated using central composite design method. It was found that feed temperature has the largest effect among the parameters on the permeation flux. The flow rate and salt rejection of the membrane in the optimum conditions were 4.47 Kg m?2 h?1 and 99.37%, respectively.  相似文献   
6.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
7.
《Ceramics International》2021,47(21):29722-29729
As semiconductor devices have become miniaturized and highly integrated, interconnection problems such as RC delays, power dissipation, and crosstalk appear. To alleviate these problems, materials with a low dielectric constant should be used for the interlayer dielectric in nanoscale semiconductor devices. Silica aerogel as a porous structure composed of silica and air can be used as the interlayer dielectric material to achieve a very low dielectric constant. However, the problem of its low stiffness needs to be resolved for the endurance required in planarization. The purpose of this study is to discover the geometric effect of the electrical and mechanical properties of silica aerogel. The effects of porosity, the distribution of pores, the number of pores on the dielectric constant, and elastic modulus were analyzed using FEM. The results suggest that the porosity of silica aerogel is the main parameter that determines the dielectric constant and it should be at least 0.76 to have a very low dielectric constant of 1.5. Additionally, while maintaining the porosity of 0.76, the silica aerogel needs to be designed in an ordered open pores structure (OOPS) containing 64 or more pores positioned in a simple cubic lattice point to endure in planarization, which requires an elastic modulus of 8 GPa to prevent delamination.  相似文献   
8.
Increasing the dielectric loss capacity plays an important role in enhancing the electromagnetic absorption performance of materials. It remains a challenge to simultaneously introduce multiple types of dielectric losses in the material. In this work, we show that the atomic and interfacial dipole polarizations can be simultaneously enhanced by substituting N species into both carbon coating layers and bulk TiC lattices of a core-shell TiC@C material. Additionally, substitution of N species results more exposed TiC(111) facets and refines the TiC grain sizes in the bulk material, which is beneficial for enhancing the scattering of the external electromagnetic waves. The maximum reflection loss of the N substituted TiC@C material is measured as ?47.1 dB with an effective absorbing bandwidth of 4.83 GHz at 1.9 mm, which illustrates a valuable way to further tuning the electromagnetic absorption performance of this type of materials.  相似文献   
9.
为了探讨氮含量及固溶温度对21-6-9不锈钢组织和硬度的影响,分别在950、1000、1050和1100 ℃对3种不同氮含量的热轧态21-6-9不锈钢进行1 h固溶处理,通过光学显微镜观察其组织结构,结合Thermo-Calc热力学计算对试验钢的微观组织进行分析,并对其进行硬度测试。结果表明,0.20%~0.28%N的21-6-9不锈钢热轧后沿轧制方向析出铁素体,且钢中铁素体经950~1100 ℃固溶处理可消除,当N含量达到0.34%时,试验钢中不再出现铁素体。随着固溶处理温度的升高,21-6-9不锈钢的晶粒组织长大,硬度降低。N含量的增加可显著提高固溶态21-6-9不锈钢的硬度,其增加程度随固溶处理温度的升高而减弱。  相似文献   
10.
The corrosion mechanisms of T24, T92, VM12, and AISI 304 steels are studied under the influence of NaCl–KCl, NaCl–Na2SO4, and KCl–K2SO4 salt mixtures in a dry air atmosphere at 650°C for 15 days. NaCl–KCl was the most aggressive deposit and AISI 304 stainless steel exhibited the highest corrosion resistance. There was no relation between the Cr content of the ferritic steels and their corrosion resistance in NaCl–KCl. In contrast, the resistance of high-Cr steels was better when exposed to NaCl–Na2SO4 and KCl–K2SO4. The high-Cr and the low-Cr steels were more susceptible to NaCl–Na2SO4 and to KCl–K2SO4, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号