首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
金属工艺   2篇
一般工业技术   3篇
  2022年   1篇
  2011年   1篇
  2009年   3篇
排序方式: 共有5条查询结果,搜索用时 781 毫秒
1
1.
Nanocrystalline TiO2 films were deposited on a conducting glass substrate by the electrophoretic deposition technique. It was found that the thickness of TiO2 film increased proportionally with an increase in deposition time and deposition voltage. However, as the deposition duration or deposition voltage increased, the film surface was more discontinuous, and microcracks became more evident. The characteristic of the dye-sensitized solar cell using TiO2 film as a working electrode was analyzed. The results of the energy conversion efficiency and the photocurrent density exhibited a relationship dependent on the TiO2 thickness. Curve fitting of energy conversion efficiency vs. TiO2 thickness revealed the optimum solar cell efficiency ~ 2.8% at the film thickness of ~ 14 μm.  相似文献   
2.
Journal of Materials Science: Materials in Electronics - CH3NH3PbI3 perovskite films were prepared via a hot-casting method using six different CH3NH3I, PbI2 and Pb(SCN)2 solutions. Surface...  相似文献   
3.
The core-shell nanocomposites of titanium dioxide (TiO2) and nickel oxide (NiO) used as modified photoelectrode materials in a quasi-solid-state dye-sensitized solar cell (quasi-DSSC) were synthesized using TiO2 P-25 and a nickel acetate precursor, via ball milling. The as-obtained intermediate products were annealed at 350, 450, and 550 degrees C. The structural properties of the NiO/TiO2 nanocomposites were well characterized via X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The results imply that NiO-shell-coated TiO2 nanoparticles can be obtained with the assistance of sufficient thermal energy in the system. The crystallite size of the composite increased as the annealing temperature increased. Among all the prepared conditions, the composite with 0.1 wt% NiO exhibited the best performance, with an optimized solar-energy conversion efficiency of 2.29% and with a short-circuit current density of 7.21 mA/cm2. The significant enhancement of the device's current density may be associated with the charge recombination suppression by the NiO shell, which acted as a potential barrier in the composite. The decrease in the recombination of the photo-injected electrons, and the increase in the number of electrons tunneling through the NiO layer at the interface, may have resulted from the presence of a NiO layer on the TiO2 nanoparticles.  相似文献   
4.
Multiwall carbon nanotube (MWCNT) films are prepared on a conductive substrate by electrophoretic deposition. The thickness of MWCNT films is found to increase with the carbon nanotube concentration and the deposition duration. Scanning electron microscopy and energy dispersive X-ray measurements detect magnesium particles incorporated on the MWCNT films. The performance of dye-sensitized solar cell using the electrophoretically MWCNT films as a counter electrode shows a relationship dependent on the film thickness and the amount of magnesium loading. The increase in the magnesium loading on carbon films diminishes the solar cell efficiency. This is because magnesium particles cover the carbon nanotube surface reducing the nanotube catalytic sites and blocking electron transfer to tri-iodide (I3) ions.  相似文献   
5.
This paper reports for the first time the synthesis of hexagonal diamond thin films on high-speed steel substrates by multi-mode microwave plasma enhanced chemical vapor deposition. Before deposition of the films, the substrate surface was treated by scratching with diamond powder. The deposited films were characterized by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy. The XRD patterns of (100) and (101) planes and the Raman peaks at ~ 1317-1322 cm− 1 were observed, confirming the formation of hexagonal diamond phase in the prepared films. The effects of voltage bias on the phase formation, microstructure and hardness of the films were also studied by setting the voltage to 0, − 70, − 150 and − 190 V. The highest hardness of 23.8 GPa was found in the film having clusters of size about 550 nm deposited under a bias voltage of − 150 V. These clusters were built up of grains of size about 14 nm.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号