首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
综合类   2篇
机械仪表   2篇
武器工业   3篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
针对某履带车辆盘式制动器,对其在紧急制动过程中的最高温度变化情况进行理论与仿真分析,结果表明:制动初始阶段,相对摩擦速度最大,摩擦产生能量最多,制动盘温度急剧上升,随着制动过程的进行,相对摩擦速度降低,温度上升速度也降低,最高温度将达到525.36℃.当机械能转化为内能的速度小于对流散热时,制动盘的温度开始逐渐降低.结合制动盘工作时的温度场分布,得到制动过程中制动盘内部应力应变分布情况.  相似文献   
2.
双循环圆液力缓速器叶形设计方法   总被引:1,自引:0,他引:1  
为提高双循环液力缓速器制动功率密度,对其叶形设计方法开展研究.针对双循环液力缓速器弯叶片叶形结构特点,提出相切圆弧叶形设计法,以叶形包角与工作面圆弧半径为设计变量,建立叶形设计参数化模型.利用试验设计方法对不同叶形参数的双循环液力缓速器弯叶片进行实例设计,并与样机制动性能进行对比.结果表明:样机仿真与试验的制动力矩平均相对误差在5%以内,数值计算方法准确可靠;基于相切圆弧叶形设计法建立的弯叶片制动力矩变化范围较大,通过设定合适的叶形参数,缓速器制动性能可得到有效提高.  相似文献   
3.
扰流柱对车用液力缓速器空损抑制效应分析   总被引:1,自引:0,他引:1  
为抑制车用液力缓速器空转功率损失,对扰流柱机构抑制空损效应进行三维流场数值模拟.针对扰流柱布置形式,建立定轮安装扰流柱与未安装扰流柱两种情况的周期计算模型,以降低仿真成本,并在空转工况与充液工况下,分别对两模型计算精度进行验证.计算不同转速下安装扰流柱与未安装扰流柱周期模型的空损,获取空转工况下空气对两模型叶片所施加的制动功率,得到周期流道速度场、压力场分布状态,并对比分析了扰流柱对空气流场扰动效果以及空损抑制作用.结果表明,扰流柱机构能有效阻碍空气的循环流动,某缓速器在动轮转速3 400 r/min时空损可降低48.4%,有效提升了车辆的功率利用率.  相似文献   
4.
双循环圆液力缓速器叶形参数优化设计   总被引:9,自引:2,他引:7  
为对双循环圆液力缓速器弯叶片叶形参数进行优化设计,搭建叶栅系统优化设计平台。建立缓速器内流道参数化模型,并通过网格独立性研究对仿真模型可信度进行验证。基于三维流场仿真技术,以叶形包角与工作面内外圆弧半径为设计变量,进行试验设计研究,分析设计参数对缓速器制动性能的影响,构建近似模型,采用多岛遗传算法进行全局优化设计,得到最优的设计参数,并对优化前后缓速器内流场特性与制动性能进行对比分析。分析结果表明:优化后缓速器的制动性能显著提高,制动力矩平均增幅可达42.3%.  相似文献   
5.
为比较不同叶型双循环圆液力缓速器制动性能,开展了弯叶片与不同倾角直叶片液力缓速器的制动性能研究。对各叶型缓速器内流场进行三维数值模拟,获取了不同转速全充液工况下的制动力矩曲线,得到循环流道速度场、压力场、湍流动能分布状态以及空转工况下的空损功率曲线,并进行对比分析。分析结果表明,数值计算方法具有较高精度,弯叶片双循环圆液力缓速器有良好的制动性能,有利于保证缓速器叶片的强度与刚度,且空损较小。  相似文献   
6.
对液力缓速器在车辆传动系统中的常见布置方式进行总结,并结合液力缓速器相对于变速机构前置、中置与后置型,针对结构特点、制动特性、拆装维护性等方面进行不同布置方式优缺点的分析比较。基于某型双循环圆液力缓速器,研究了液力缓速器前置与后置型对制动特性的影响。仿真结果分析表明,后置型液力缓速器具有良好的制动特性,前置型液力缓速器低挡位输出制动转矩优于后置型,其整车低速制动特性也优于后置工况。  相似文献   
7.
双循环圆液力缓速器叶片顶弧优化设计   总被引:3,自引:1,他引:2  
穆洪斌  魏巍  闫清东  刘城 《兵工学报》2016,37(3):400-407
为提高双循环圆液力缓速器制动效能,对其弯叶片顶弧参数进行优化设计。基于叶片顶弧参数化设计方法,建立缓速器内流道计算模型。以顶弧半径与顶弧间距为设计变量,利用三维流场仿真技术进行试验设计研究,并开展制动力矩影响参数的敏感性分析。通过构建制动力矩近似模型,采用梯度优化算法进行寻优以得到优化结果。就设计参数对液力缓速器内流场流动状态与制动外特性影响开展分析,并与样机仿真以及试验数据进行对比。结果表明,优化后缓速器制动性能得到明显提高,制动力矩平均增幅可达70.8%,且叶片结构满足强度要求。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号