首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   1篇
综合类   1篇
化学工业   3篇
轻工业   2篇
一般工业技术   3篇
冶金工业   1篇
  2021年   1篇
  2018年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
排序方式: 共有10条查询结果,搜索用时 62 毫秒
1
1.
利用国产六面顶液压机,以Bi2O3、MnO2和Mn粉末为原料(n(Bi2O3)/n(MnO2)/n(Mn)=2∶3∶1),在高温高压条件下(3~5 GPa,600~800℃),制备了钙钛矿结构BiMnO3烧结体。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、振动样品磁强计(VSM)对烧结样品进行了测试分析,考察了烧结温度、压力对样品结构、组织形貌及磁性的影响。实验结果表明,当烧结温度为600℃时,钙钛矿结构BiMnO3晶粒开始形成,随着温度的升高,其相对含量增加,比饱和磁化强度逐渐增大,而比饱和磁化强度随着压力增大,先增大后减小;样品矫顽力随晶粒尺寸减小而减小。合成钙钛矿结构BiMnO3单相最佳实验条件为4 GPa,800℃,1 h,其居里温度为99 K,在90 K的测试温度条件下,最大的比饱和磁化强度为35 A·m2/kg,最小的矫顽力为37.6×79.6 A/m。  相似文献   
2.
铁基合金助剂制备金刚石复合片结构及物性研究   总被引:1,自引:0,他引:1  
在高温高压条件下(5.6GPa,1400℃),以Fe55Ni26Co19合金(KOV)为烧结助剂,采用高压熔渗技术制备了生长型金刚石复合片(PDC)。采用SEM、XRD、EDS等观察了PDC的组织形貌、物相成分;Ra-man光谱计算了金刚石的残余应力;测试了金刚石烧结体的耐磨性及耐热性。实验结果表明,KOV均匀渗透金刚石层,与金刚石颗粒形成了致密交错的网状结构,PDC结合界面复合牢固;PDC物相包括金刚石、WC、CoCx、α-Co、FeNi等;PDC烧结体的磨耗比为2.8×104,热失重温度为800℃,且具有较小的残余压应力,数值为0.08GPa。  相似文献   
3.
通过采用微区拉曼光谱(micro-Raman spectroscopy)测试了不同类型金刚石烧结体的残余应力形式及大小.结果表明,金刚石复合片(PDC)存在不同形式的残余应力(压应力和拉应力),金刚石烧结体径向区域的残余应力为中心高,边缘低;而金刚石球齿应力分布规律不明显,数值亦差别巨大.综上分析,金刚石制品应力分布不均匀主要是由于烧结过程中温度梯度所致.由此,控制高压烧结腔体温场的均一性,是改善残余应力的有效途径.  相似文献   
4.
在高温高压条件下(5.6GPa,1400℃),以不同铁基合金(Fe55Ni26Mn14Co5、Fe55Ni26Co19、FeNi36)为烧结助剂(熔渗质),采用高压熔渗技术制备了金刚石复合片(PDC)。采用扫描电子显微镜(SEM)观察了PDC的烧结组织形貌,对铁基合金的熔渗机制进行了探讨。实验结果表明,三种合金能够均匀渗透金刚石层,与金刚石颗粒形成了致密交错的网状结构,PDC结合界面复合牢固。腔体的压力差(δP)和温度梯度即为合金熔渗的驱动力。  相似文献   
5.
具有严重晶格畸变的钙钛矿结构BiMnO3作为可表现出铁磁性和铁电性的多铁材料,在信息存储和传感器等方面具有潜在的应用价值,得到了广泛的关注和研究。利用国产六面顶液压机,以Bi2O3、MnO2和Mn粉末为原料,在高温高压条件下(4 GPa,750~800℃)制备了单斜钙钛矿结构BiMnO3烧结体。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、振动样品磁强计(VSM)对烧结样品进行测试分析,考察了不同含量比(n(MnO2)/n(Mn)=3.5∶0.5、3∶1、2.5∶1.5、2∶2)、烧结时间(10min~2h)对样品结构、组织形貌及磁性的影响。实验结果表明:当n(MnO2)/n(Mn)=3∶1时合成钙钛矿结构BiMnO3的纯度最高;当烧结时间为10min时,即有钙钛矿结构BiMnO3生成,随着烧结时间的延长,BiMnO3的相对含量逐渐增大。800℃、1h合成的钙钛矿结构BiMnO3样品软磁性能最好,其比饱和磁化强度为33emu/g,矫顽力为37.6Oe(测试温度90K)。  相似文献   
6.
如何提高金刚石等超硬材料的耐热性对其应用具有着重要意义.本文报道了在高温高压(HPHT,5~6 GPa,1 620~1 720 K,3~5 min)烧结条件下块体金刚石复合材料(D-cBN-B4C-Co-Al-Si)的合成和表征工作.实验结果表明,在烧结样品中存在金刚石,cBN,B_4C,B_xSiC,AlCo,AlN等物相.值得注意的是,合成样品的初始氧化温度为1520 K,其值远远高于金刚石,cBN和B_4C的初始氧化温度.高热稳定性归因于在烧结过程中形成B—C、C—Si共价键和B_xSiC固溶体.该项研究获得的成果有助于制备具有耐高温的复合超硬材料.  相似文献   
7.
8.
在高温高压条件下(HPHT,5.2GPa,1450℃),通过硬质合金基体的高压原位熔渗法,制备了质地均匀的Φ15×5mm的聚晶立方氮化硼(PcBN)复合片。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、能谱仪(EDS)等考察了PcBN复合片的组织形貌及物相成分,并对其界面复合机理进行了探讨。实验结果表明,硬质合金(WC-Co)基体中WC及Co通过熔渗扩散到立方氮化硼(cBN)层,通过WC、MoCoB、Co3W3C等粘结相,实现了PcBN复合片的界面复合,PcBN层形成致密的"混凝土"结构。  相似文献   
9.
采用密封低温烧结再淬冷的方法制备了高纯度MnBi合金.利用差热分析仪(DTA)分析烧结过程中Mn-Bi的相变.利用X射线衍射仪(XRD)和振动样品磁强计(VSM)分析了烧结样品的物相和磁性.结果 表明:n(Bi)∶n(Mn)为1∶1.3,275℃下烧结20 h后淬冷可获得高纯度的低温相MnBi合金块体材料;温度为50~350 K时,磁化强度随温度的升高而减小,矫顽力Hc和剩余磁化强度Mr先减小后增大;温度低于200 K时,随着温度的降低,样品趋近饱和;温度为50 K时,样品的饱和磁化强度为78.0 Am2/kg.本文制备工艺简单且可实现该合金的批量生产,对制备新型合金材料具有重要的参考价值.  相似文献   
10.
在高温高压(4~5 GPa,600℃~900℃)条件下,以钴、石墨微粉作为原料,制备了 Co-C 烧结体,借助 XRD 考察了不同实验参数(温度、C 掺杂量、压力等)对 Co-C 相变的影响,结果表明:C 掺杂量为1~5 wt %的范围内,随着掺杂量的提高,Co 发生从六角密堆(α-Co 相)向面心立方结构(β-Co 相)转变的临界温度降低;温度的升高有利于 Co-C 的固相烧结反应,β-Co 相随之增多,而压力的升高对α-Co向β-Co 转变有抑制作用,相变的临界温度也随之提高。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号