首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69460篇
  免费   5984篇
  国内免费   3053篇
电工技术   4071篇
技术理论   7篇
综合类   4758篇
化学工业   11408篇
金属工艺   4007篇
机械仪表   4390篇
建筑科学   5841篇
矿业工程   2047篇
能源动力   2054篇
轻工业   4621篇
水利工程   1304篇
石油天然气   4652篇
武器工业   571篇
无线电   7822篇
一般工业技术   8457篇
冶金工业   3271篇
原子能技术   818篇
自动化技术   8398篇
  2024年   116篇
  2023年   1110篇
  2022年   1675篇
  2021年   2674篇
  2020年   2074篇
  2019年   1788篇
  2018年   2025篇
  2017年   2283篇
  2016年   2085篇
  2015年   2630篇
  2014年   3618篇
  2013年   4121篇
  2012年   4584篇
  2011年   4949篇
  2010年   4332篇
  2009年   4109篇
  2008年   4013篇
  2007年   3893篇
  2006年   3894篇
  2005年   3332篇
  2004年   2277篇
  2003年   2016篇
  2002年   1771篇
  2001年   1696篇
  2000年   1708篇
  1999年   1811篇
  1998年   1422篇
  1997年   1204篇
  1996年   1082篇
  1995年   959篇
  1994年   789篇
  1993年   565篇
  1992年   434篇
  1991年   341篇
  1990年   320篇
  1989年   228篇
  1988年   173篇
  1987年   104篇
  1986年   99篇
  1985年   54篇
  1984年   39篇
  1983年   21篇
  1982年   32篇
  1981年   23篇
  1980年   13篇
  1979年   5篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Samples in Si–Al-R-O-N (R = Y, Gd, Yb) systems were prepared by solid-state reactions using R2O3, Al2O3, SiO2 and Si3N4 powders as starting materials. X-ray diffraction was done to investigate RAM-J(R) solid solutions [RAM = R4Al2O9, J(R) = R4Si2N2O7] formation and their equilibrium with RSO (R4Si2O10). Phase relations between RAM, J(R) and RSO at 1700 °C were summarized in a phase diagram. It was determined that a limited solid solution of RAM and RSO could be formed along RAM-RSO tie-line, while RAM and J(R) form a continuous solid solution along RAM-J(R) tie-line. In RAM-J(R)-RSO ternary systems, the RAM-J(R) tie-lines were extended towards the RSO corner to form a continuous solid solution area of JRAMss (R = Y, Gd, Yb). The established phase relations in the Si–Al-R-O-N (R = Y, Gd, Yb) systems may facilitate compositional selections for developing JRAMss as monolithic ceramics or for SiC/Si3N4 based composites using the solid-solutions as a second refractory phase.  相似文献   
2.
Immunotherapy is an efficient approach to clinical oncology. However, the immune privilege of the central nervous system (CNS) limits the application of immunotherapeutic strategies for brain cancers, especially glioblastoma (GBM). Tumor resistance to immune checkpoint inhibitors is a further challenge in immunotherapies. To overcome the immunological tolerance of brain tumors, a novel multifunctional nanoparticle (NP) for highly efficient synergetic immunotherapy is reported. The NP contains an anti-PDL1 antibody (aPDL1), upconverting NPs, and the photosensitizer 5-ALA; the surface of the NP is conjugated with the B1R kinin ligand to facilitate transport across the blood-tumor-barrier. Upon irradiation with a 980 nm laser, 5-ALA is transformed into protoporphyrin IX, generating reactive oxygen species. Photodynamic therapy (PDT) further promotes intratumoral infiltration of cytotoxic T lymphocytes and sensitizes tumors to PDL1 blockade therapy. It is demonstrated that combining PDT and aPDL1 can effectively suppress GBM growth in mouse models. The proposed NPs provide a novel and effective strategy for boosting anti-GBM photoimmunotherapy.  相似文献   
3.
LiNbO3 crystals activated by Sm3+ and co-doped with Zr4+ (Sm:Zr:LN) or Hf4+ (Sm:Hf:LN) were prepared by the Czochralski method. Detailed investigation on spectroscopic properties was conducted on the frame of Judd-Ofelt (J-O) theory. The J-O intensity parameters Ωi (i = 2, 4, 6), fluorescence branching ratios and radiative lifetime of excited level 4G5/2 were determined. Furthermore, the thermal stability of the strong orange-red emissions obtained under near-UV excitation in both crystals was evaluated. As high as 100% and 97% of integrated intensities at room temperature in Sm:Zr:LN and Sm:Hf:LN respectively were retained at 423 K, demonstrating the suppressed thermal attenuation. The temperature sensing performance based on fluorescence intensity ratio strategy was degraded at higher temperatures with relatively low sensitivities, while the shift of CIE chromaticity coordinates of Sm:Zr:LN and Sm:Hf:LN in the orange-red region was insignificant, demonstrating the color constancy with increasing temperature. With the efficient and thermally stable orange-red luminescence, Sm:Zr:LN and Sm:Hf:LN could serve as promising candidate materials for near-UV excited white light-emitting diodes.  相似文献   
4.
The organic pollutants in water have been a great environment challenges to human beings, and photocatalytic degradation is an effective method to solve this problem. In this paper, the Rh-loaded cobalt ferrite CoFe2O4 (CFO) nanoparticles have been successfully synthesized by in situ photodeposition of Rh nanoparticles onto the porous CFO particles as the photocatalysts. After incorporating Rh nanoparticles, the CFO/Rh composite has a higher specific surface area and is more efficient in charge separation than the bare CFO. The photocatalytic efficiency of decomposing Malachite Green (MG) is improved from 70% over the bare CFO to 97% over the optimized CFO/Rh in 60 min. The CFO/Rh sample also demonstrates its durability for the degradation of MG in 5 photocatalytic reaction cycles. Additionally, hydroxyl radicals (?OH) and superoxide radicals (?O2?) are proved to be the crucial reactive species during the photocatalytic degradation of MG with CFO/Rh, evidenced by the active species capture experiments. This work provides a useful approach to enhance the photocatalytic activity of semiconductors for degrading organic dyes.  相似文献   
5.
Pulsed laser deposition (PLD) was used to prepare tungsten trioxide (WO3) films on ITO substrates with a varying laser power density of 4.0–5.5 W/cm2. XPS indicated that when the laser power density decreased, the peak positions of the W 4f and O 1s orbits shifted slightly to low energy due to the difference in oxygen vacancies. As the laser power density decreased, W6+ gradually replaced the lattice position of O2?, increasing oxygen vacancies in the lattice. The transmittance modulated values (ΔT) were over 44% at 830 nm, indicating strong absorption by the WO3 thin films in the near-infrared ray. The switching time of the WO3 thin films between bleached states and coloured states decreased as the laser power density increased due to the amorphous structure, morphology, and lower oxygen deficiency at a high power density. The high ΔT and very fast switching time of tb (1.09 s) and tc (6.01 s) demonstrated the excellent electrochromic (EC) properties of the WO3 films prepared by PLD.  相似文献   
6.
当前,我国水泥工业在可燃废弃物应用技术方面都还处于一家一户、自制自用、效率极低的初级阶段。发达国家的替代燃料:“垃圾衍生燃料”RDF、“固体回收燃料”SRF、“次煤”Subcoal和“纸塑垃圾衍生燃料”RPF制成的原材料都是可燃废弃物,只是处理工艺技术不同或者由垃圾中分拣出的可燃废弃物不同,制成颗粒状衍生燃料的品质不同,这些都可以替代部分甚或替代全部化石燃料在水泥窑炉中应用。我国大力发展“替代燃料”产业,有助于水泥工业消纳更多的“可燃废弃物”,为改善环境尤其是城镇环境和面貌,为我国的节能减排和绿色高质量发展发挥更大的作用。  相似文献   
7.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
8.
Recent studies have demonstrated that dihydrophenazine (Pz) with high redox-reversibility and high theoretical capacity is an attractive building block to construct p-type polymer cathodes for dual-ion batteries. However, most reported Pz-based polymer cathodes to date still suffer from low redox activity, slow kinetics, and short cycling life. Herein, a donor–acceptor (D–A) Pz-based conjugated microporous polymer (TzPz) cathode is constructed by integrating the electron-donating Pz unit and the electron-withdrawing 2,4,6-triphenyl-1,3,5-triazine (Tz) unit into a polymer chain. The D–A type structure enhances the polymer conjugation degree and decreases the band gap of TzPz, facilitating electron transportation along the polymer skeletons. Therefore the TzPz cathode for dual-ion battery shows a high reversible capacity of 192 mAh g−1 at 0.2 A g−1 with excellent rate performance (108 mAh g−1 at 30 A g−1), which is much higher than that of its counterpart polymer BzPz produced from 1,3,5-triphenylbenzene (Bz) and Pz (148 and 44 mAh g−1 at 0.2 and 10 A g−1, respectively). More importantly, the TzPz cathode also shows a long and stable cyclability of more than 10 000 cycles. These results demonstrate that the D–A structural design is an efficient strategy for developing high-performance polymer cathodes for dual-ion batteries.  相似文献   
9.
Hydrogel shells that compartmentalize the water core from the aqueous surrounding provide molecular selectivity on size and charge in transmembrane transport. It is highly demanding to produce thin hydrogel shells to minimize diffusion length and maximize core volume. Here, internal osmosis in water-in-oil-in-water-in-oil (W/O/W/O) triple-emulsion droplets is used to produce thin hydrogel shells enclosing a large water core. The triple-emulsion droplets are prepared to have an ultrathin middle oil layer using a capillary microfluidic device. The innermost water droplet has a higher osmolarity than the outer water layer containing photopolymerizable hydrogel precursors, which pumps water from the outer layer to the core through the ultrathin oil layer by the osmosis. Therefore, the outer layer gets thinner and hydrogel precursors are enriched while the size of the triple-emulsion droplets remains unchanged. Through photopolymerization of precursors and phase transfer from oil to water, hydrogel shells enclosing water core are produced in the water environment; the oil layer is ruptured for molecular exchange through the shells. The thickness and composition of the hydrogel shells are precisely controllable by the osmotic conditions. The shells show a high permeation rate due to the thinness as well as controlled cut-off threshold of permeation for neutral and charged molecules.  相似文献   
10.
建立了一种快速、灵敏测定药物中盐酸美西律的双波长分光光度法。在弱碱性溶液中,虎红与盐酸美西律反应生成离子缔合物,使溶液发生褪色现象,光谱曲线上呈现2个较强的负吸收峰,它们分别位于472和560 nm,在此2个波长处,盐酸美西律的线性范围为0.04~2.6 mg/L,表观摩尔吸光系数(κ)分别为5.87×104(472 nm)和3.59×104 L/(mol·cm)(560 nm),检出限为0.033(472 nm)和0.035 mg/L(560 nm)。用双波长法测定时,其表观摩尔吸光系数(κ)达9.46×104 L/(mol·cm),检出限为0.017 mg/L。双波长法用于盐酸美西律药片测定,加标回收率为97.7%~103%,相对标准偏差(RSD)为2.2%~2.6%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号