首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
化学工业   6篇
建筑科学   1篇
能源动力   6篇
轻工业   2篇
无线电   11篇
一般工业技术   3篇
自动化技术   3篇
  2023年   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2017年   6篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  1996年   1篇
  1976年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
2.
Medium frequency power transformers embedded into power electronics converters are frequently encountered in many applications such as electrical transportation and renewable energy systems and power supplies. Thus, researchers have been focused on soft magnetic materials such as amorphous and nanocrystalline materials to obtain smaller and more efficient transformer designs with the improvements on manufacturing technologies of the high frequency core materials. In this study, the transformer design methodology is proposed with the finite element analysis method, and a 35 kVA medium frequency transformer with nanocrystalline core material is designed. After the sizing stage, three-dimensional model of the transformer is created with finite element analysis software, and then co-simulations of this electromagnetic transformer model with a power electronics converter circuit are performed for practical operation conditions. Furthermore, thermal behavior of the prototype transformer is determined with the thermal coupling analysis, and temperature distribution of the prototype transformer is visualized with a thermal imaging camera. The transformer efficiency, exact equivalent circuit of the transformer and flux distributions in the transformer core are obtained from these simulation studies. In addition, the prototype of the designed transformer is produced and tested. The design conditions and simulation results are validated with experimental studies.  相似文献   
3.
Aluminum nitride (AlN) hollow nanofibers were synthesized via plasma‐enhanced atomic layer deposition using sacrificial electrospun polymeric nanofiber templates having different average fiber diameters (~70, ~330, and ~740 nm). Depositions were carried out at 200°C using trimethylaluminum and ammonia precursors. AlN‐coated nanofibers were calcined subsequently at 500°C for 2 h to remove the sacrificial polymeric nanofiber template. SEM studies have shown that there is a critical wall thickness value depending on the template's average fiber diameter for AlN hollow nanofibers to preserve their shapes after the template has been removed by calcination. Best morphologies were observed for AlN hollow nanofibers prepared by depositing 800 cycles (corresponding to ~69 nm) on nanofiber templates having ~330 nm average fiber diameter. TEM images indicated uniform wall thicknesses of ~65 nm along the fiber axes for samples prepared using templates having ~70 and ~330 nm average fiber diameters. Synthesized AlN hollow nanofibers were polycrystalline with a hexagonal crystal structure as determined by high‐resolution TEM and selected area electron diffraction. Chemical compositions of coated and calcined samples were studied using X‐ray photoelectron spectroscopy (XPS). High‐resolution XPS spectra confirmed the presence of AlN.  相似文献   
4.
Macroscopic (continuum) and microscopic models, used for simulation of material behaviors under different loading conditions, contain a large number of material parameters and determination of these parameters is an important and difficult issue in the modeling. The aim of this work essentially deals with parameter determination procedure of any viscoplasticity model. In this study, genetic algorithm (GA) parameter optimization procedure has been proposed to determine material parameters of viscoplastic models. Parameter determination capability of the GA optimization method was tested by using VBO model which one of the viscoplasticity theory with no yield surface and loading–unloading conditions. Fourteen material parameters of VBO model are determined using uniaxial loading–unloading stress strain curves of high density polyethylene (HDPE). Using these material parameters, creep and relaxation behaviors of HDPE are simulated. A good match with experimental results is obtained. Apart from many existing studies in the literature, GA optimization procedure is applied to determine material parameters instead of trial and error procedure. This method can also be used to determine materials parameters of other viscoplasticity theories for all kinds of materials.  相似文献   
5.
The uniaxial tension (loading and unloading), creep and relaxation experiments on high density polyethylene (HDPE) have been carried out at room temperature. The stress–strain behavior of HDPE under different strain rates, creep (relaxation) behavior at different stress (strain) levels have been investigated. These experimental results are used to compare the simulation results of a unified state variable theory, viscoplasticity theory based on overstress (VBO) and a macro-mechanical constitutive model for elasto-viscoplastic deformation of polymeric materials developed by Boyce et al. (Polymer 41:2183–2201, 2000). It is observed that elasto-viscoplasticity model by Boyce et al. (Polymer 41:2183–2201, 2000) is not good enough to simulate stress–strain, creep and relaxation behaviors of HDPE. However, the aforementioned behaviors can be modeled quantitatively by using VBO model.  相似文献   
6.
Weighted overlap and add‐orthogonal frequency division multiplexing (WOLA‐OFDM) is a new waveform proposed recently for meeting the requirements of fifth generation (5G) telecommunication standards. In spite of being a serious 5G waveform candidate, WOLA‐OFDM is exposed to the problem of high peak to average power ratio (PAPR) similar to the other waveforms in which multicarrier transmission strategy is employed. Due to the overlapping nature of WOLA‐OFDM waveform, where the extension of the current symbol is overlapped with the extension of the previous symbol, it will not be efficient to apply conventional PTS (C‐PTS) directly to the WOLA‐OFDM waveform. Therefore, in this paper, we propose dual symbol optimization‐based partial transmit sequence (DSO‐PTS) technique for PAPR reduction in WOLA‐OFDM waveform. In our proposed technique, two adjacent symbols are jointly considered when searching for the optimal data block with minimum PAPR unlike the C‐PTS where the adjacent symbols are optimized individually. In the simulations, our proposed DSO‐PTS technique, C‐PTS, and GreenOFDM that is developed recently by modifying the conventional selective mapping (SLM) method are compared with each other with regard to PAPR reduction performance for different search numbers (SNs). In addition, the effects of DSO‐PTS, C‐PTS, and GreenOFDM on the amount of out of band (OOB) radiation in the power spectral density (PSD) graph of WOLA‐OFDM employing solid state power amplifier (SSPA) is measured for different SNs and input back off (IBO) values. According to the simulation results, our proposed DSO‐PTS technique clearly demonstrates a superior PAPR reduction and PSD performance.  相似文献   
7.
In this paper, we present a multiuser detection technique based on artificial neural network (NN) for synchronous multicarrier code division multiple access systems over Rayleigh fading channels. To test the robustness of the proposed receiver, also the effect of power control problem is studied with a comparative manner. Bit error rate (BER) performance of the NN based receiver is compared with the single user bound and conventional receivers. Although the BER performance of the conventional receiver degrades as the number of the users and power level differences among the users increase, as a decision structure, neural network based receiver gives closer BER performance to the single user bound.  相似文献   
8.
How to design the pilot tones that are used in channel estimation has a significant effect on the estimation performance. To achieve good performance in least square (LS) algorithm, we propose the artificial bee colony (ABC) algorithm for optimizing the placement of pilot tones in MIMO–OFDM systems. We also derive the upper bound of mean square error of LS estimation with the help of Gerschgorin disc theorem for fitness function of ABC algorithm. The results show that designing pilot tones using the ABC algorithm outperforms other considered placement strategies in terms of high system performance and low computational complexity.  相似文献   
9.
10.
In this study, a maximum power point tracking DC–DC quadratic boost converter for high conversion ratio required applications is proposed. The proposed system consists of a quadratic boost converter with high step-up ratio and fuzzy logic based maximum power point tracking controller. The fuzzy logic based maximum power point tracking algorithm is used to generate the converter reference signal, and the change in PV power and the change in PV voltage are selected as fuzzy variables. Determined membership functions and fuzzy rules which are design to track the maximum power point of the PV system generates the output signal of the fuzzy logic controller's output. It is seen from MATLAB/Simulink simulation and experimental results that the quadratic boost converter provides high step-up function with robustness and stability. In addition, this process is achieved with low duty cycle ratio when compared to the traditional boost converter. Furthermore, simulation and experimental results have validated that the proposed system has fast response, and it is suitable for rapidly changing atmospheric conditions. The steady state maximum power point tracking efficiency of the proposed system is obtained as 99.10%. Besides, the output power oscillation of the converter, which is a major problem of the maximum power point trackers, is also reduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号