首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   17篇
电工技术   1篇
化学工业   87篇
金属工艺   5篇
机械仪表   7篇
建筑科学   13篇
能源动力   11篇
轻工业   24篇
水利工程   2篇
石油天然气   2篇
无线电   42篇
一般工业技术   77篇
冶金工业   22篇
原子能技术   1篇
自动化技术   119篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   15篇
  2020年   4篇
  2019年   18篇
  2018年   17篇
  2017年   13篇
  2016年   23篇
  2015年   6篇
  2014年   14篇
  2013年   35篇
  2012年   16篇
  2011年   29篇
  2010年   24篇
  2009年   24篇
  2008年   20篇
  2007年   19篇
  2006年   30篇
  2005年   19篇
  2004年   15篇
  2003年   9篇
  2002年   9篇
  2001年   4篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有413条查询结果,搜索用时 15 毫秒
1.
2.
The COVID-19 pandemic has affected the educational systems worldwide, leading to the near-total closures of schools, universities, and colleges. Universities need to adapt to changes to face this crisis without negatively affecting students’ performance. Accordingly, the purpose of this study is to identify and help solve to critical challenges and factors that influence the e-learning system for Computer Maintenance courses during the COVID-19 pandemic. The paper examines the effect of a hybrid modeling approach that uses Cloud Computing Services (CCS) and Virtual Reality (VR) in a Virtual Cloud Learning Environment (VCLE) system. The VCLE system provides students with various utilities and educational services such as presentation slides/text, data sharing, assignments, quizzes/tests, and chatrooms. In addition, learning through VR enables the students to simulate physical presence, and they respond well to VR environments that are closer to reality as they feel that they are an integral part of the environment. Also, the research presents a rubric assessment that the students can use to reflect on the skills they used during the course. The research findings offer useful suggestions for enabling students to become acquainted with the proposed system’s usage, especially during the COVID-19 pandemic, and for improving student achievement more than the traditional methods of learning.  相似文献   
3.
This study outlines a new sensing platform based on glassy carbon electrodes modified by gold nanoparticles (AuNPs) for the determination of heavy metal. A glassy carbon electrode was modified by chitosan stabilized AuNPs. AuNPs were prepared by reducing gold salt with a polysaccharide chitosan. Here, chitosan acted as a reducing/stabilizing agent. The AuNPs were characterized with UV–Visible absorption spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. Chitosan covered AuNPs were immobilized on the glassy carbon electrode for the determination of Cu (II) in aqueous solutions. The electrochemical determination of Cu (II) ions was performed using the differential pulse voltammetry technique. Some parameters for Cu (II) determination, such as pH, preconcentration time and electrolysis potential of Cu (II), were optimized. The detection limit was calculated as 5 × 10?9 mol L?1 by means of the 3:1 current-to-noise ratio. The interference of Cr(III), Fe(II), Ni(II), Pb(II), Mg(II), Zn(II), Ba(II) ions was investigated and showed a negligible effect on the electrode response. Recovery studies were carried out using tap water.  相似文献   
4.
In attempt to compare the removal efficiency and yield of the activated carbon prepared using the conventional and microwave‐assisted heating is the focus of this work. Toward this olive stone (a biomass precursor) is activated using the popular activating agent potassium hydroxide. The process optimization exercise is carried out by using the standard full factorial statistical design of experiments (response surface methodology). The activated carbons prepared under the optimized conditions are compared based on the adsorption capacity and yield. The adsorption capacity was found higher using microwave heating as compared with conventional heating. The microwave heating requires significantly lesser holding time as compared to conventional heating method to produce activated carbon of comparable quality, with higher yield. The BET surface area of carbon using microwave heating is significantly higher than the conventional heating. Although the mesopore surface area of carbon is not vary significantly, the activation time, power, and nitrogen gas consumption are significantly lower than the conventional heating rendering that the activation process via microwave is more economical than that via conventional heating. The adsorption isotherm data fitted the Langmuir isotherm well and the monolayer adsorption capacity was found to be 12.0 and 8.42 mg/g for microwave and thermally heated activated carbon, respectively. Regeneration studies showed that microwave‐irradiated and thermally heated olive stone could be used several times by desorption with an HCl reagent. Both carbons can be used for the efficient removal of Ni2+ (>99%) from contaminated wastewater. © 2013 American Institute of Chemical Engineers AIChE J, 60: 237–250, 2014  相似文献   
5.
In this paper, we consider a cognitive scenario where an energy harvesting secondary user shares the spectrum with a primary user. The secondary source helps the primary source in delivering its undelivered packets during periods of silence of the primary source. The primary source has a queue for storing its data packets, whereas the secondary source has two data queues: a queue for storing its own packets and the other for storing the fraction of the undelivered primary packets accepted for relaying. The secondary source is assumed to be a battery‐based node, which harvests energy packets from the environment. In addition to its data queues, the secondary user has an energy queue to store the harvested energy packets. The secondary energy packets are used for primary packets decoding and data packets transmission. More specifically, if the secondary energy queue is empty, the secondary source can neither help the primary source nor transmit a packet from the data queues. The energy queue is modeled as a discrete‐time queue with Markov arrival and service processes. Because of the interaction of the queues, we provide inner and outer bounds on the stability region of the proposed system. We investigate the impact of the energy arrival rate on the stability region. Numerical results show the significant gain of cooperation.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
6.
Functional nylon 6,6 nanofibers incorporating cyclodextrins (CD) were developed via electrospinning. Enhanced thermal stability of the nylon 6,6/CD nanofibers was observed due to interaction between CD and nylon 6,6. X‐ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy studies indicated the existence of some CD molecules on the surface of the nanofibers. Electrospun nylon 6,6 nanofibers without having CD were ineffective for entrapment of toluene vapor from the environment, whereas nylon 6,6/CD nanofibrous membranes can effectively entrap toluene vapor from the surrounding by taking advantage of the high surface‐volume ratio of nanofibers with the added advantage of inclusion complexation capability of CD presenting on the nanofiber surface. The modeling studies for formation of inclusion complex between CD and toluene were also performed by using ab initio techniques. Our results suggest that nylon 6,6/CD nanofibrous membranes may have potential to be used as air filters for the removal of organic vapor waste from surroundings. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41941.  相似文献   
7.
This study characterizes surface treated classic type fiber metal laminates (FMLs) interlaminar shear strength (ILSS) based on a glass mat reinforced polyphenylene sulphide composite and an aluminum alloy. The effect of concentration of γ‐glycidoxypropyltrimethoxysilane surface treatment on ILSS of adhesive bonding between aluminum sheet and composite laminates has been investigated. After determining the silane concentration, novel FML material is manufactured using a compression moulding process which involves aluminum sheets with different circular hole perforations (Array type A and B) with two circular hole diameters (ϕ3 and ϕ5 mm) and two total hole area/closed area: 0.05 and 0.06) to develop mechanical interlocking between aluminum layers and composite laminates. Tensile tests are performed to investigate the effect of different circular hole perforations on ILSS properties of FMLs. Test results show that ILSS is improved with increasing the circular hole diameter and decreased with the number of holes as correlated with undrilled FMLs. Failure modes, damage initiation, and progression of FMLs with different open hole perforations are determined with optical microscope. POLYM. COMPOS., 37:963–973, 2016. © 2014 Society of Plastics Engineers  相似文献   
8.
9.
Ozfatura  M. Emre  ElAzzouni  Sherif  Ercetin  Ozgur  ElBatt  Tamer 《Wireless Networks》2019,25(4):1931-1947
Wireless Networks - In this paper, we study a full-duplex cooperative cognitive radio network with multiple full-duplex secondary users acting as potential relays for transmitting the packets of a...  相似文献   
10.
This paper presents a generalized multistage bayesian framework to enable an autonomous robot to complete high‐precision operations on a static target in a large field. The proposed framework consists of two multistage approaches, capable of dealing with the complexity of high‐precision operation in a large field to detect and localize the target. In the multistage localization, locations of the robot and the target are estimated sequentially when the target is far away from the robot, whereas these locations are estimated simultaneously when the target is close. A level of confidence (LOC) for each detection criterion of a sensor and the associated probability of detection (POD) of the sensor are defined to make the target detectable with different LOCs at varying distances. Differential entropies of the robot and target are used as a precision metric for evaluating the performance of the proposed approach. The proposed multistage observation and localization approaches were applied to scenarios using an unmanned ground vehicle (UGV) and an unmanned aerial vehicle (UAV). Results with the UGV in simulated environments and then real environments show the effectiveness of the proposed approaches to real‐world problems. A successful demonstration using the UAV is also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号