首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142496篇
  免费   13793篇
  国内免费   7033篇
电工技术   9410篇
技术理论   8篇
综合类   10681篇
化学工业   23233篇
金属工艺   8570篇
机械仪表   9124篇
建筑科学   12334篇
矿业工程   4328篇
能源动力   4043篇
轻工业   10952篇
水利工程   2913篇
石油天然气   7535篇
武器工业   1379篇
无线电   15770篇
一般工业技术   15630篇
冶金工业   6216篇
原子能技术   1587篇
自动化技术   19609篇
  2024年   337篇
  2023年   2652篇
  2022年   4517篇
  2021年   6493篇
  2020年   4890篇
  2019年   3944篇
  2018年   4423篇
  2017年   4822篇
  2016年   4158篇
  2015年   5968篇
  2014年   7392篇
  2013年   8558篇
  2012年   9969篇
  2011年   10438篇
  2010年   8949篇
  2009年   8736篇
  2008年   8332篇
  2007年   7844篇
  2006年   7719篇
  2005年   6682篇
  2004年   4641篇
  2003年   4092篇
  2002年   4066篇
  2001年   3470篇
  2000年   3185篇
  1999年   3286篇
  1998年   2506篇
  1997年   2053篇
  1996年   2024篇
  1995年   1668篇
  1994年   1364篇
  1993年   981篇
  1992年   783篇
  1991年   614篇
  1990年   441篇
  1989年   354篇
  1988年   293篇
  1987年   200篇
  1986年   131篇
  1985年   89篇
  1984年   56篇
  1983年   34篇
  1982年   57篇
  1981年   37篇
  1980年   43篇
  1979年   15篇
  1978年   2篇
  1965年   2篇
  1959年   2篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 67 毫秒
1.
周慧 《机械管理开发》2021,36(8):131-132
盘形制动器属于提升系统内的一重要部件,为确保提升机盘形制动器的稳定可靠运行,基于同家梁矿矿井提升机盘形制动器应用现状,分析了现存的主要问题,提出了采用智能监测盘形制动器来替代原盘形制动器的策略.通过在该新型盘形制动器内装设内置制动正压力传感器,解决了老旧盘形制动器无法准确测量内部碟簧力的问题,取得了较好的应用效果.  相似文献   
2.
Aromatic and functional polymers with processibility derived from biobased starting materials are prerequisite considering sustainable society. Poly(2,5-benzimidazole)s are rigid-rod polymers to show ultrahigh thermal stability such as flame retardance, while usually suffer from poor solubility. Here, poly(benzimidazole-co-amide)s are synthesized from two biobased monomers, 3,4-diaminobenzoic acid and a semirigid comonomer, 4-aminohydrocinnamic acid. The copolymers with an amide composition of 80 mol% and higher are soluble in widely used polar solvents to fabricate the films keeping high flame retardance, which is comparable with popular high-performance polymers such as aromatic polyimides, polyetheretherketone, polyphenylene sulfide, etc.  相似文献   
3.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
4.
Recently, circularly polarized organic light-emitting diodes (CP-OLEDs) fabricated with thermally activated delayed fluorescence (TADF) emitters are developed rapidly. However, most devices are fabricated by vacuum deposition technology, and developing efficient solution-processed CP-OLEDs, especially nondoped devices, is still a challenge. Herein, a pair of triptycene-based enantiomers, (S,S)-/(R,R)-TpAc-TRZ, are synthesized. The novel chiral triptycene scaffold of enantiomers avoids their intermolecular π–π stacking, which is conducive to their aggregation-induced emission characteristics and high photoluminescence quantum yield of 85% in the solid state. Moreover, the triptycene-based enantiomers exhibit efficient TADF activities with a small singlet-triplet energy gap (ΔEST) of 0.03 eV and delayed fluorescence lifetime of 1.1 µs, as well as intense circularly polarized luminescence with dissymmetry factors (|gPL|) of about 1.9 × 10−3. The solution-processed nondoped CP-OLEDs based on (S,S)-/(R,R)-TpAc-TRZ not only display obvious circularly polarized electroluminescence signals with gEL values of +1.5 × 10−3 and −2.0 × 10−3, respectively, but also achieve high efficiencies with external quantum, current, and power efficiency up to 25.5%, 88.6 cd A−1, and 95.9 lm W−1, respectively.  相似文献   
5.
6.
Alumina platelets were arranged horizontally in submicron alumina particles by shear force in the flow of slurries during casting. The obtained alumina green bodies with platelets were pressureless-sintered in vacuum, producing ceramics with thoroughly oriented grains and high transmittance. The effects of sintering parameters on the densification, microstructure evolution, and orientation degree of alumina ceramics were investigated and discussed. The results showed that the densification, grain size, orientation degree, and in-line transmittance were increased with increasing sintering temperature. The enhancement of orientation degree was mainly coherent with grain growth. The grain-oriented samples exhibited a much higher in-line transmittance (at 600 nm) of 61 % than that of the grain random sample (29 %). Moreover, the transmission remained a high level in the ultraviolet range (<300 nm).  相似文献   
7.
Laminated Si3N4/SiCw ceramics were successfully prepared by tape casting and hot-pressing. Its mechanical properties were measured and the impact resistance was discussed. The toughness of the laminated Si3N4/SiCw ceramics was 13.5 MPa m1/2, which was almost 1.6 times that of Si3N4/SiCw composite ceramics, namely 8.5 MPa m1/2. Moreover, the indentation strength of laminated Si3N4/SiCw ceramics was not sensitive to increasing indentation loads and exhibited a rising R-curve behaviour, indicating that the laminated Si3N4/SiCw ceramics had excellent impact resistance. The improved toughness and impact resistance of laminated Si3N4/SiCw ceramics was attributed to the residual stress caused by a thermal expansion coefficient mismatch between the different layers, resulting in crack deflection and bridging of SiC whiskers in the interface layer, thus consuming a large amount of fracture work.  相似文献   
8.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
9.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
10.
The luminescent hydrogen-bonded organic framework (HOF) based films have become one of the most remarkable materials for optical application, thus, developing facile synthesis methods and establishing multifunctional applications for HOF-based luminescent materials are essential. Herein, a dual-emitting Eu3+-functionalized HOF hydrogel film ( 1 ) is fabricated successfully. 1 emits a blue-green long afterglow when turning off the UV lamp, and the long afterglow lifetime gets to 1.99 s. 1 performs great selectivity, high sensitivity, and low detection limit toward ofloxacin and flumequine, and the sensing toward ofloxacin and flumequine is in accord with the chroma and ratio modes. The fluorescent response mechanisms of 1  toward ofloxacin and flumequine are investigated in depth, which are further utilized to build an anticounterfeiting platform with high-level security. The film-based anticounterfeiting platform can conduct information encryption on demand inline with different fluorescent responses and can also fetch specific information by controlling the long afterglow intensity and excited light. This study not only provides a representative case of the fabrication of dual-emitting Eu3+-functionalized HOF-based hydrogel film but also opens the possibility of HOF-based film as intelligent luminescent materials with multifunctionalities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号