首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   7篇
  国内免费   5篇
综合类   2篇
无线电   55篇
自动化技术   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   8篇
  2013年   8篇
  2012年   10篇
  2011年   8篇
  2010年   8篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
在某些特殊的工作条件下,峰值电流模BUCK转换器会工作在输入电压和输出电压差值较小,且开关占空比较大的情况下。此时,如果发生负载由重载跳变到极轻载的变化,可能会导致输出电压高于输入电压的不利情况发生,整个控制环路出现失控,输出电压出现振荡波形。本文提出的辅助控制电路通过对输入、输出电压的比较检测,判断BUCK环路是否处于异常状态,并在合适的时间内关断高低侧功率管,保证了输出电压的稳定性。基于0.35μm CMOS工艺的仿真结果表明,当BUCK转换器负载发生重载6 A跳变为极轻载100 mA使得输出电压V_O超过输入电压V_(IN)时,失控辅助电路开始工作并在V_O掉到V_(IN)以下时及时输出恢复信号并关闭该辅助电路,恢复时间为87μs,整个过程未出现输出电压振荡现象。  相似文献   
2.
凭借碳化硅(SiC)材料的宽禁带、高击穿电场、高电子饱和速率和高导热性等优点,SiC MOSFET广泛应用在高压、高频等大功率场合。传统基于硅(Si)MOSFET的驱动电路无法完全发挥SiC MOSFET的优异性能,针对SiC MOSFET的应用有必要采用合适的栅驱动设计技术。目前,已经有很多学者在该领域中有一定的研究基础,为SiC MOSFET驱动电路的设计提供了参考。对现有基于SiC MOSFET的PCB板级设计技术进行了详细说明,并从开关速度、电磁干扰噪声以及能量损耗等方面对其进行了总结和分析,给出了针对SiC MOSFET驱动电路的设计考虑和建议。  相似文献   
3.
为了解决滞环控制模式开关电源中无振荡器电路,从而无法使用现有频率抖动方式降低EMI和现有频率抖动电路调制方式单一、移植性差的问题,本文提出了一种新型的数字频率抖动电路,该电路结构简单,调制方式多样,可移植性好。本设计采用1μm 40V CMOS工艺进行仿真验证,Hspice仿真结果表明该数字频率抖动电路有效地降低了系统的EMI。  相似文献   
4.
采用华虹NEC 0.35um BCD工艺,设计并实现了一种可作DC-DC转换器控制芯片内部误差放大器的CMOS跨导放大器,该跨导放大器采用源极电阻跨接式负反馈技术提高跨导的线性度、采用双折叠式差分对结构实现共模输入范围轨至轨(rail-to-rail)、采用低功耗偏置推挽(push-pull)输出结构提高输出驱动负载的能力,整体电路具有结构紧凑、功耗低、线性度高等特点。仿真结果表明:在5.25V电源电压下,驱动1pf负载,直流增益可以达到68.2db,功耗708uw,100kHz下跨导的三次谐波失真HD3达到-56db。  相似文献   
5.
基于双环路控制构建推挽结构,增强了功率管栅端的摆率,改善了无片外电容LDO的瞬态响应。此外,结合A类复合放大器特性,降低了功率管栅端阻抗,有利于提升LDO的频率稳定性。该LDO输入电压范围为2.0~3.5 V,输出电压为1.8 V,最大负载电流为100 mA。当负载电流在1 μs内从100 μA跳变到100 mA以及从100 mA跳变到100 μA时,最大下冲电压为128 mV,最大上冲电压为170 mV,建立时间分别为2.5 μs和2.4 μs,电路工作时消耗的静态电流仅为12.6 μA。  相似文献   
6.
提出一种用于LED驱动的恒流控制电路,通过对一个基准电流进行放大,得到LED的输出电流;通过改变基准电流的大小,可以按比例改变输出电流的大小,即实现LED驱动的模拟调光功能.该电路对基准电流进行2000倍的放大,基准电流可以在5~110 μA的范围内变化,能满足常规LED驱动芯片模拟调光功能的要求.仿真结果表明,该电路产生的LED输出电流误差小于0.03%,对温度敏感性小,能在较大温度范围内保持正常工作,且设计了相关的修调电路,使电路的匹配性更好、精度更高.  相似文献   
7.
文中设计了一种应用于Class D音频放大器中高性能PWM控制。该控制能够在较宽的电源电压范围内,使调制锯齿波的输入电平及音频输入信号经过前置放大后的共模电平跟随电源电压的变化而变化。共模电平经过PWM比较器得到占空比随输入信号变化的控制信号,从而提高系统的输出功率。仿真结果显示,当电源电压在2.4-5V范围变化时.音频信号和调制锯齿波的共模电平偏差在2mV以内,同时锯齿波的幅度也随着电源电压的升高而升高.显示了良好的线性跟随性。  相似文献   
8.
设计了一种带自适应电荷泵的超低功耗快速瞬态响应NMOS LDO,电路主要包含误差放大器、缓冲器、功率级、动态零点模块以及自适应电荷泵模块。该自适应电荷泵能够根据负载电流的大小调节工作频率,在兼顾大负载条件下功率管栅极需求的同时,保证了轻载下超低功耗的需求。同时为了满足电路中快速瞬态响应的需要,加入了动态电流电路。电路基于0.18μm BCD工艺设计,其工作电压范围为2.5~3.6 V,输出电压为1.2 V,负载范围为10μA~20 mA,工作的温度范围为-40~125℃。仿真结果显示,所设计的LDO供电电压调整率可达到1.123 mV/V,重载跳轻载时的恢复时间和轻载跳重载时的恢复时间分别为260μs和5μs,而静态电流最小仅为0.291μA。  相似文献   
9.
周泽坤  陈志军  石跃  张波 《微电子学》2007,37(3):448-451
基于0.5μm CMOS工艺,设计了一种能够在较大范围内工作的电流调节器。该电路通过适当地利用NMOS和PMOS差分输入对的各自特性,以及改进的差分结构,实现了工作范围的扩展和共阴极LED的驱动。该电流调节器采用的运算放大器都是一级的自补偿结构,从而简化了电路的稳定性设计,提高了物理实现的成功率。仿真结果表明,该电流调节器在整个工作范围内的精度可以达到80%以上。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号