首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49431篇
  免费   1647篇
  国内免费   82篇
电工技术   1065篇
综合类   65篇
化学工业   9049篇
金属工艺   1024篇
机械仪表   1004篇
建筑科学   2414篇
矿业工程   163篇
能源动力   1494篇
轻工业   4694篇
水利工程   478篇
石油天然气   107篇
无线电   3945篇
一般工业技术   7976篇
冶金工业   10211篇
原子能技术   596篇
自动化技术   6875篇
  2023年   227篇
  2021年   730篇
  2020年   495篇
  2019年   627篇
  2018年   821篇
  2017年   810篇
  2016年   943篇
  2015年   826篇
  2014年   1234篇
  2013年   2486篇
  2012年   2029篇
  2011年   2738篇
  2010年   1951篇
  2009年   2064篇
  2008年   2210篇
  2007年   2120篇
  2006年   1771篇
  2005年   1755篇
  2004年   1513篇
  2003年   1373篇
  2002年   1297篇
  2001年   955篇
  2000年   856篇
  1999年   880篇
  1998年   2631篇
  1997年   1741篇
  1996年   1329篇
  1995年   983篇
  1994年   940篇
  1993年   903篇
  1992年   605篇
  1991年   495篇
  1990年   546篇
  1989年   515篇
  1988年   442篇
  1987年   406篇
  1986年   401篇
  1985年   511篇
  1984年   451篇
  1983年   388篇
  1982年   391篇
  1981年   387篇
  1980年   352篇
  1979年   364篇
  1978年   277篇
  1977年   340篇
  1976年   417篇
  1975年   275篇
  1974年   259篇
  1973年   221篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
A minor natural oil seepage is described from an unlikely setting in the Oman Mountains. The host rocks are fractured pelagic limestones of the lower member of the Triassic – Lower Jurassic Matbat Formation of the Hamrat Duru Group in the lower part of the allochthonous Hawasina Complex. This paper summarises Oman's established oil families and documents previously recorded oil seepages as context for describing the new seepage, its geochemistry, and possible source rock. The seep oil is different to those known from Oman's oil fields and probably derived from a poor quality, Mesozoic clastic source rock containing a mix of terrigenous and marine organic matter. The most likely source appears to be the Toarcian turbiditic upper member of the Matbat Formation, equivalent to the clastic Mafraq Formation of the Arabian Platform. The occurrence of source rocks in the allochthonous sediments of the NeoTethyan Hawasina Basin has been suspected previously, though their commercial significance remains to be established.  相似文献   
2.
Magnetic Resonance Materials in Physics, Biology and Medicine - Innovative physiologic MRI development focuses on depiction of heterogenous vascular and metabolic features in glioblastoma. For this...  相似文献   
3.
Fire Technology - There are multiple situations in which fires may occur at environmental conditions that are different than standard atmospheric conditions. Changes in ambient pressure, oxygen...  相似文献   
4.
5.
We report here the development of two computational tools PCFPS (Photonic Crystal Fiber Parameter Study) and PCFPA (Photonic Crystal Fiber Parameter Analysis), equipped with graphical user interface (GUI) for modeling of photonic crystal fiber. The tools are based on different structural parameters, and they provide characteristic analysis of the modal parameters from the structural parameters. The main feature of PCFPS is that it enables the user to find out the values of each defining modal parameter that has an immense contribution towards the manufacture of photonic crystal fiber. Additionally, PCFPA allows the user to observe the variation in the modal parameters with respect to the changes in structural parameters (such as d, Λ, d/Λ, and λ/>Λ). Besides their ease of use, these two schemes have high computational precision and adaptability, giving a novel platform to optical engineers to modulate the microstructured fibers according to their requirement.  相似文献   
6.
The human brain is often likened to an incredibly complex and intricate computer, rather than electrical devices, consisting of billions of neuronal cells connected by synapses. Different brain circuits are responsible for coordinating and performing specific functions. The reward pathway of the synaptic plasticity in the brain is strongly related to the features of both drug addiction and relief. In the current study, a synaptic device based on layered hafnium disulfide (HfS2) is developed for the first time, to emulate the behavioral mechanisms of drug dosage modulation for neuroplasticity. A strong gate-dependent persistent photocurrent is observed, arising from the modulation of substrate-trapping events. By controlling the polarity of gate voltage, the basic functions of biological synapses are realized under a range of light spiking conditions. Furthermore, under the control of detrapping/trapping events at the HfS2/SiO2 interface, positive/negative correlations of the An/A1 index, which significantly reflected the weight change of synaptic plasticity, are realized under the same stimulation conditions for the emulation of the drug-related addition/relief behaviors in the brain. The findings provide a new advance for mimicking human brain plasticity.  相似文献   
7.
Copper catalysts are widely studied for the electroreduction of carbon dioxide (CO2) to value-added hydrocarbon products. Controlling the surface composition of copper nanomaterials may provide the electronic and structural properties necessary for carbon-carbon coupling, thus increasing the Faradaic efficiency (FE) towards ethylene and other multi-carbon (C2+) products. Synthesis and catalytic study of silver-coated copper nanoparticles (Cu@Ag NPs) for the reduction of CO2 are presented. Bimetallic CuAg NPs are typically difficult to produce due to the bulk immiscibility between these two metals. Slow injection of the silver precursor, concentrations of organic capping agents, and gas environment proved critical to control the size and metal distribution of the Cu@Ag NPs. The optimized Cu@Ag electrocatalyst exhibited a very low onset cell potential of −2.25 V for ethylene formation, reaching a FE towards C2+ products (FEC2+) of 43% at −2.50 V, which is 1.0 V lower than a reference Cu catalyst to reach a similar FEC2+. The high ethylene formation at low potentials is attributed to enhanced C C coupling on the Ag enriched shell of the Cu@Ag electrocatalysts. This study offers a new catalyst design towards increasing the efficiency for the electroreduction of CO2 to value-added chemicals.  相似文献   
8.
9.
CD22 (Siglec-2) is a B-cell surface inhibitory protein capable of selectively recognising sialylated glycans, thus dampening autoimmune responses against self-antigens. Here we have characterised the dynamic recognition of complex-type N-glycans by human CD22 by means of orthogonal approaches including NMR spectroscopy, computational methods and biophysical assays. We provide new molecular insights into the binding mode of sialoglycans in complex with h-CD22, highlighting the role of the sialic acid galactose moieties in the recognition process, elucidating the conformational behaviour of complex-type N-glycans bound to Siglec-2 and dissecting the formation of CD22 homo-oligomers on the B-cell surface. Our results could enable the development of additional therapeutics capable of modulating the activity of h-CD22 in autoimmune diseases and malignancies derived from B-cells.  相似文献   
10.
An optimized one-pot recipe has been developed to synthesize a surfactant molecule, referred to as OMID, consisting of an imidazoline head group and aliphatic tail, which is an exemplar corrosion inhibitor for carbon steel in acidic solutions. As evidenced by gas chromatography, 1H and 13C nuclear magnetic resonance, and Fourier-transform infrared data, a high-purity product was achieved without the use of either a solvent or catalyst. Critical micelle concentration values and corrosion inhibition efficiencies ( η %) were determined in aqueous solutions of hydrochloric acid and sulfuric acid using surface tensiometry and linear polarization resistance measurements, respectively. Hydrolysis of the imidazoline head group as a function of pH (0–11) was explored with ultraviolet–visible absorption spectroscopy. In addition, N 1s and C 1s X-ray photoelectron spectroscopy data were acquired from both surface-adsorbed OMID and a multilayer of the imidazoline head group of OMID. These latter data are highly relevant to those attempting to understand OMID inhibition chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号