首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
自动化技术   19篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2009年   3篇
排序方式: 共有19条查询结果,搜索用时 62 毫秒
1.
Multilayer perceptron has been widely used in time series forecasting for last two decades. However, it is a well-known fact that the forecasting performance of multilayer perceptron is negatively affected when data have outliers and this is an important problem. In recent years, some alternative neuron models such as generalized-mean neuron, geometric mean neuron, and single multiplicative neuron have been also proposed in the literature. However, it is expected that forecasting performance of artificial neural network approaches based on these neuron models can be also negatively affected by outliers since the aggregation function employed in these models is based on mean value. In this study, a new multilayer feed forward neural network, which is called median neuron model multilayer feed forward (MNM-MFF) model, is proposed in order to deal with this problem caused by outliers and to reach high accuracy level. In the proposed model, unlike other models suggested in the literature, MNM which has median-based aggregation function is employed. MNM is also firstly defined in this study. MNM-MFF is a robust neural network method since aggregation functions in MNM-MFF are based on median, which is not affected much by outliers. In addition, to train MNM-MFF model, particle swarm optimization method was utilized. MNM-MFF was applied to two well-known time series in order to evaluate the performance of the proposed approach. As a result of the implementation, it was observed that the proposed MNM-MFF model has high forecasting accuracy and it is not affected by outlier as much as multilayer perceptron model. Proposed method brings improvement in 7 % for data without outlier, in 90 % for data with outlier, in 95 % for data with bigger outlier.  相似文献   
2.
In the analysis of time invariant fuzzy time series, fuzzy logic group relationships tables have been generally preferred for determination of fuzzy logic relationships. The reason of this is that it is not need to perform complex matrix operations when these tables are used. On the other hand, when fuzzy logic group relationships tables are exploited, membership values of fuzzy sets are ignored. Thus, in defiance of fuzzy set theory, fuzzy sets’ elements with the highest membership value are only considered. This situation causes information loss and decrease in the explanation power of the model. To deal with these problems, a novel time invariant fuzzy time series forecasting approach is proposed in this study. In the proposed method, membership values in the fuzzy relationship matrix are computed by using particle swarm optimization technique. The method suggested in this study is the first method proposed in the literature in which particle swarm optimization algorithm is used to determine fuzzy relations. In addition, in order to increase forecasting accuracy and make the proposed approach more systematic, the fuzzy c-means clustering method is used for fuzzification of time series in the proposed method. The proposed method is applied to well-known time series to show the forecasting performance of the method. These time series are also analyzed by using some other forecasting methods available in the literature. Then, the results obtained from the proposed method are compared to those produced by the other methods. It is observed that the proposed method gives the most accurate forecasts.  相似文献   
3.
Yılmaz  Oguzhan  Bas  Eren  Egrioglu  Erol 《Computational Economics》2022,59(4):1699-1711
Computational Economics - Looking at the artificial neural networks’ literature, most of the studies started with feedforward artificial neural networks and the training of many feedforward...  相似文献   
4.
Kocak  Cem  Egrioglu  Erol  Bas  Eren 《The Journal of supercomputing》2021,77(6):6178-6196
The Journal of Supercomputing - In recent years, deep artificial neural networks can have better forecasting performance than many other artificial neural networks. The long short-term memory...  相似文献   
5.
Fuzzy time series approaches are used when observations of time series contain uncertainty. Moreover, these approaches do not require the assumptions needed for traditional time series approaches. Generally, fuzzy time series methods consist of three stages, namely, fuzzification, determination of fuzzy relations, and defuzzification. Artificial intelligence algorithms are frequently used in these stages with genetic algorithms being the most popular of these algorithms owing to their rich operators and good performance. However, the mutation operator of a GA may cause some negative results in the solution set. Thus, we propose a modified genetic algorithm to find optimal interval lengths and control the effects of the mutation operator. The results of applying our new approach to real datasets show superior forecasting performance when compared with those obtained by other techniques.  相似文献   
6.
Computational Economics -  相似文献   
7.
8.
Fuzzy time series methods have been recently becoming very popular in forecasting. These methods can be categorized into two subclasses that are univariate and multivariate approaches. It is a known fact that real time series data can actually be affected by many factors. In this case, the using multivariate fuzzy time series forecasting model can be more reasonable in order to get more accurate forecasts. To obtain fuzzy forecasts when multivariate fuzzy time series approach is adopted, the most applied method is using tables of fuzzy relations. However, employing this method is a computationally though task. In this study, we introduce a new method that does not require using fuzzy logic relation tables in order to determine fuzzy relationships. Instead, a feed forward artificial neural network is employed to determine fuzzy relationships. The proposed method is applied to the time series data of the total number of annual car road accidents casualties in Belgium from 1974 to 2004 and a comparison is made between our proposed method and the methods proposed by Jilani and Burney [Jilani, T. A., & Burney, S. M. A. (2008). Multivariate stochastic fuzzy forecasting models. Expert Systems with Applications, 35, 691–700] and Lee et al. [Lee, L.-W., Wang, L.-H., Chen, S.-M., & Leu, Y.-H. (2006). Handling forecasting problems based on two factors high order fuzzy time series. IEEE Transactions on Fuzzy Systems, 14, 468–477].  相似文献   
9.
Multiplicative neuron model-based artificial neural networks are one of the artificial neural network types which have been proposed recently and have produced successful forecasting results. Sigmoid activation function was used in multiplicative neuron model-based artificial neural networks in the previous studies. Although artificial neural networks which involve the use of radial basis activation function produce more successful forecasting results, Gaussian activation function has not been used for multiplicative neuron model yet. In this study, rather than using a sigmoid activation function, Gaussian activation function was used in multiplicative neuron model artificial neural network. The weights of artificial neural network and parameters of activation functions were optimized by guaranteed convergence particle swarm optimization. Two major contributions of this study are as follows: the use of Gaussian activation function in multiplicative neuron model for the first time and the optimizing of central and propagation parameters of activation function with the weights of artificial neural network in a single optimization process. The superior forecasting performance of the proposed Gaussian activation function-based multiplicative neuron model artificial neural network was proved by applying it to real-life time series.  相似文献   
10.
Forecast Combination by Using Artificial Neural Networks   总被引:3,自引:1,他引:2  
One of the efficient ways for obtaining accurate forecasts is usage of forecast combination method. This approach consists of combining different forecast values obtained from different forecasting models. Also artificial neural networks and fuzzy time series approaches have proved their success in the field of forecasting. In this study, a new forecast combination approach based on artificial neural networks is proposed. The forecasts obtain from different fuzzy time series models are combined by utilizing artificial neural networks. The proposed method is applied to index of Istanbul stock exchange (IMKB) time series and the results are compared to other forecast combination methods available in the literature. As a result of the implementation, it is seen that the proposed forecast combination approach produces better forecasts than those produced by other methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号