首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
自动化技术   13篇
  2022年   2篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2007年   1篇
  2005年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Li  Xintong  Li  Chen  Rahaman  Md Mamunur  Sun  Hongzan  Li  Xiaoqi  Wu  Jian  Yao  Yudong  Grzegorzek  Marcin 《Artificial Intelligence Review》2022,55(6):4809-4878

With the development of Computer-aided Diagnosis (CAD) and image scanning techniques, Whole-slide Image (WSI) scanners are widely used in the field of pathological diagnosis. Therefore, WSI analysis has become the key to modern digital histopathology. Since 2004, WSI has been used widely in CAD. Since machine vision methods are usually based on semi-automatic or fully automatic computer algorithms, they are highly efficient and labor-saving. The combination of WSI and CAD technologies for segmentation, classification, and detection helps histopathologists to obtain more stable and quantitative results with minimum labor costs and improved diagnosis objectivity. This paper reviews the methods of WSI analysis based on machine learning. Firstly, the development status of WSI and CAD methods are introduced. Secondly, we discuss publicly available WSI datasets and evaluation metrics for segmentation, classification, and detection tasks. Then, the latest development of machine learning techniques in WSI segmentation, classification, and detection are reviewed. Finally, the existing methods are studied, and the application prospects of the methods in this field are forecasted.

  相似文献   
2.
Zhang  Jiawei  Li  Chen  Rahaman  Md Mamunur  Yao  Yudong  Ma  Pingli  Zhang  Jinghua  Zhao  Xin  Jiang  Tao  Grzegorzek  Marcin 《Artificial Intelligence Review》2022,55(4):2875-2944

Microorganisms such as bacteria and fungi play essential roles in many application fields, like biotechnique, medical technique and industrial domain. Microorganism counting techniques are crucial in microorganism analysis, helping biologists and related researchers quantitatively analyze the microorganisms and calculate their characteristics, such as biomass concentration and biological activity. However, traditional microorganism manual counting methods, such as plate counting method, hemocytometry and turbidimetry, are time-consuming, subjective and need complex operations, which are difficult to be applied in large-scale applications. In order to improve this situation, image analysis is applied for microorganism counting since the 1980s, which consists of digital image processing, image segmentation, image classification and suchlike. Image analysis-based microorganism counting methods are efficient comparing with traditional plate counting methods. In this article, we have studied the development of microorganism counting methods using digital image analysis. Firstly, the microorganisms are grouped as bacteria and other microorganisms. Then, the related articles are summarized based on image segmentation methods. Each part of the article is reviewed by methodologies. Moreover, commonly used image processing methods for microorganism counting are summarized and analyzed to find common technological points. More than 144 papers are outlined in this article. In conclusion, this paper provides new ideas for the future development trend of microorganism counting, and provides systematic suggestions for implementing integrated microorganism counting systems in the future. Researchers in other fields can refer to the techniques analyzed in this paper.

  相似文献   
3.
Nowadays object recognition is a fundamental capability for an autonomous robot in interaction with the physical world. Taking advantage of new sensing technologies providing RGB-D data, the object recognition capabilities increase dramatically. Object recognition has been well studied, however, known object classifiers usually feature poor generality and, therefore, limited adaptivity to different application domains. Although some domain adaptation approaches have been presented for RGB data, little work has been done on understanding the effects of applying object classification algorithms using RGB-D for different domains. Addressing this problem, we propose and comprehensively investigate an approach for object recognition in RGB-D data that uses adaptive Support Vector Machines (aSVM) and, in this way, achieves an impressive robustness in cross-domain adaptivity. For evaluation, two datasets from different application domains were used. Moreover, a study of state-of-the-art RGB-D feature extraction techniques and object classification methods was performed to identify which combinations (object representation - classification algorithm) remain less affected in terms of performance while switching between different application domains.  相似文献   
4.
5.
6.
7.
In this article we introduce and compare two approaches towards automatic classification of 3D objects in 2D images. The first one is based on statistical modeling of wavelet features. It estimates probability density functions for all possible object classes considered in a particular recognition task. The second one uses sparse local features. For training, SURF features are extracted from the training images. During the recognition phase, features from the image are matched geometrically, providing the best fitting object for the query image. Experiments were performed for different training sets using more than 40 000 images with different backgrounds. Results show very good classification rates for both systems and point out special characteristics for each approach, which make them more suitable for different applications.  相似文献   
8.
9.
In this article we present a new appearance-based approach for the classification and the localization of 3-D objects in complex scenes. A main problem for object recognition is that the size and the appearance of the objects in the image vary for 3-D transformations. For this reason, we model the region of the object in the image as well as the object features themselves as functions of these transformations. We integrate the model into a statistical framework, and so we can deal with noise and illumination changes. To handle heterogeneous background and occlusions, we introduce a background model and an assignment function. Thus, the object recognition system becomes robust, and a reliable distinction, which features belong to the object and which to the background, is possible. Experiments on three large data sets that contain rotations orthogonal to the image plane and scaling with together more than 100 000 images show that the approach is well suited for this task.  相似文献   
10.
This paper addresses the problem of estimating a camera motion from a non-calibrated monocular camera. Compared to existing methods that rely on restrictive assumptions, we propose a method which can estimate camera motion with much less restrictions by adopting new example-based techniques compensating the lack of information. Specifically, we estimate the focal length of the camera by referring to visually similar training images with which focal lengths are associated. For one step camera estimation, we refer to stationary points (landmark points) whose depths are estimated based on RGB-D candidates. In addition to landmark points, moving objects can be also used as an information source to estimate the camera motion. Therefore, our method simultaneously estimates the camera motion for a video, and the 3D trajectories of objects in this video by using Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) particle filtering. Our method is evaluated on challenging datasets demonstrating its effectiveness and efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号