首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   865篇
  免费   45篇
  国内免费   4篇
电工技术   7篇
化学工业   198篇
金属工艺   11篇
机械仪表   7篇
建筑科学   37篇
能源动力   32篇
轻工业   113篇
水利工程   5篇
石油天然气   4篇
无线电   89篇
一般工业技术   101篇
冶金工业   48篇
原子能技术   4篇
自动化技术   258篇
  2023年   8篇
  2022年   13篇
  2021年   34篇
  2020年   28篇
  2019年   17篇
  2018年   22篇
  2017年   28篇
  2016年   28篇
  2015年   28篇
  2014年   44篇
  2013年   71篇
  2012年   63篇
  2011年   63篇
  2010年   61篇
  2009年   61篇
  2008年   65篇
  2007年   44篇
  2006年   34篇
  2005年   22篇
  2004年   20篇
  2003年   20篇
  2002年   21篇
  2001年   8篇
  2000年   9篇
  1999年   11篇
  1998年   16篇
  1997年   12篇
  1996年   7篇
  1995年   5篇
  1994年   13篇
  1993年   5篇
  1992年   6篇
  1991年   8篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有914条查询结果,搜索用时 15 毫秒
1.
The P2X7 receptor is a promising target for the treatment of various diseases due to its significant role in inflammation and immune cell signaling. This work describes the design, synthesis, and in vitro evaluation of a series of novel derivatives bearing diverse scaffolds as potent P2X7 antagonists. Our approach was based on structural modifications of reported (adamantan-1-yl)methylbenzamides able to inhibit the receptor activation. The adamantane moieties and the amide bond were replaced, and the replacements were evaluated by a ligand-based pharmacophore model. The antagonistic potency of the synthesized analogues was assessed by two-electrode voltage clamp experiments, using Xenopus laevis oocytes that express the human P2X7 receptor. SAR studies suggested that the replacement of the adamantane ring by an aryl-cyclohexyl moiety afforded the most potent antagonists against the activation of the P2X7 cation channel, with analogue 2-chloro-N-[1-(3-(nitrooxymethyl)phenyl)cyclohexyl)methyl]benzamide ( 56 ) exhibiting the best potency with an IC50 value of 0.39 μM.  相似文献   
2.
We analysed the ground deformation across two blocks defined by the Rio-Patras fault from 1993 to 2017 using multi-temporal Synthetic Aperture Radar Interferometry (InSAR) techniques. Our main objective was to contribute to the assessment of seismic hazard near the large city of Patras. Multiple data-sets were used, each one covering different temporal periods. Descending and ascending acquisitions, providing different viewing geometries contribute to fully determine the ground displacement in 3D. The data-sets used are from the European Space Agency’s (ESA) European Remote Sensing (ERS), Environmental Satellite (ENVISAT) and SENTINEL-1 as well as German Aerospace Center (DLR) ’s TERRASAR-X missions. Considering ESA’s missions covering both acquisition geometries and long periods, the southern block, showing lack of a sufficient number of scatterers does not allow the displacement characterization. In contrary, the northern block is characterized by a high number of scatterers having values of maximum likehood ranging from ?3.5 to ?4.3 mm year?1 for ascending geometry and from ?1.6 to ?2.7 mm year?1 for the descending one. The fact that both geometries show negative values of displacements are consistent with downlift movement and at the same time the quantitative differentiation probably indicates an horizontal component as well.  相似文献   
3.
This paper deals with the identification of the thermal parameters of multilayer objects using the concept of thermal impedance. In order to perform such identification, temperature evolution in time is obtained by an infrared camera after power excitation is applied in the investigated structure. Infrared thermography offers the advantage of being a noncontact temperature detection and measurement method. In many practical cases, it is impossible to use contact temperature measurements. Typically, the power in the form of a step function is applied. In order to calculate the thermal impedance of an object, temperature and power are converted into the frequency domain using the Laplace transform for s = jω. Then, the poles of the thermal impedance are identified using vector fitting, which allows calculating the thermal impedance as a sum of partial fractions. This corresponds directly to the Foster network of a thermal object. In addition, the vector fitting method offers much better convergence in comparison with other methods using the polynomial rational approximation of thermal impedance. A considerable improvement of the numerical Laplace transform in high frequency range is proposed. In this approach, the variable s = is replaced by , and then, the integration result is corrected by the Taylor series. It leads to a kind of filtering of the temperature signal.  相似文献   
4.
5.
6.
7.
Structures need to be designed to maintain their stability in the event of a fire. The travelling fire methodology (TFM) defines the thermal boundary condition for structural design of large compartments of fires that do not flashover, considering near field and far field regions. TFM assumes a near field temperature of 1200°C, where the flame is impinging on the ceiling without any extension and gives the temperature of the hot gases in the far field from Alpert correlations. This paper revisits the near field assumptions of the TFM and, for the first time, includes horizontal flame extension under the ceiling, which affects the heating exposure of the structural members thus their load-bearing capacity. It also formulates the thermal boundary condition in terms of heat flux rather than in terms of temperature as it is used in TFM, which allows for a more formal treatment of heat transfer. The Hasemi, Wakamatsu, and Lattimer models of heat flux from flame are investigated for the near field. The methodology is applied to an open-plan generic office compartment with a floor area of 960 m2 and 3.60 m high with concrete and with protected and unprotected steel structural members. The near field length with flame extension (fTFM) is found to be between 1.5 and 6.5 times longer than without flame extension. The duration of the exposure to peak heat flux depends on the flame length, which is 53 min for fTFM compared with 17 min for TFM, in the case of a slow 5% floor area fire. The peak heat flux is from 112 to 236 kW/m2 for the majority of fire sizes using the Wakamatsu model and from 80 to 120 kW/m2 for the Hasemi and Lattimer models, compared with 215 to 228 kW/m2 for TFM. The results show that for all cases, TFM results in higher structural temperatures compared with different fTFM models (600°C for concrete rebar and 800°C for protected steel beam), except for the Wakamatsu model that for small fires, leads to approximately 20% higher temperatures than TFM. These findings mitigate the uncertainty around the TFM near field model and confirm that it is conservative for calculation of the thermal load on structures. This study contributes to the creation of design tools for better structural fire engineering.  相似文献   
8.
We have established a novel route for the synthesis of N-doped TiO2 by adopting flame aerosol (FSP) technique and investigated the effect of water content on the physico-chemical properties of the as-synthesized nanoparticles. The key characteristics of the developed method are to modify the precursor solution in order to incorporate nitrogen atoms into the TiO2 lattice without altering the FSP set-up. The reduction of the flame enthalpy resulting in N-incorporation into the TiO2 and the N-doping can be greatly enhanced further by the addition of secondary N-source (urea). Our XRD results reveal a shift of the (101) plane anatase diffraction peak to lower angles in our N-doped TiO2 compared to undoped TiO2, which suggest the distortion and strain in the crystal lattice prompted by the incorporation of the nitrogen atoms. The growth or expansion of crystal lattice can be attributed to the larger atomic radius of respective nitrogen atoms (r?=?1.7 Å) compared to oxygen (r?=?1.40 Å). Our XPS and EDX spectroscopy results elucidate that the nitrogen was effectively doped into the crystal lattice of TiO2 in our as-synthesized N-TiO2 catalysts predominantly in the form of interstitial nitrogen (Ti?O?N). The nitrogen atoms incorporation into the crystal lattice of titania modifies the electronic band structure of TiO2, resulting in a new mid-gap energy state N 2p band formed above O 2p valence band. This occurrence narrows the band gap of TiO2 (from 3.12 to ~2.51?eV) in our N-doped TiO2 and shifts the optical absorption to the visible region.

Copyright © 2018 American Association for Aerosol Research  相似文献   
9.
水化水泥颗粒表面超塑化剂吸附层分布模型   总被引:1,自引:0,他引:1  
制备了钙矾石(AFt)、单硫型硫铝酸钙(AFm)和钾长石类单矿物,并研究了三聚氰胺磺酸盐甲醛缩聚物(PMS)、β-萘磺酸盐甲醛缩合物(BNS)及聚羧酸盐(PC)等几种化学成分不同的超塑化剂在其早期水化颗粒表面上的吸附行为.研究发现,zeta电位是决定水泥颗粒表面对超塑化剂吸附量的关键因素.以溶液沉淀析出法人工合成的AFt具有较高的正zeta电位,能吸附大量带负电荷的超塑化剂,AFm仅带少量正电荷,其吸附超塑化剂相对较少,钾长石、氢氧钙石和石膏的zeta电位几乎为零或负值,因而基本不吸附超塑化剂.根据实验结果,笔者认为水化水泥颗粒用马赛克结构表示为最佳,而超塑化剂主要吸附在AF表面上.  相似文献   
10.
Effects of silica and silica/titania nanoparticles on glass transition and segmental dynamics of poly(dimethylsiloxane) (PDMS) were studied for composites of a core–shell type using differential scanning calorimetry, thermally stimulated depolarization current, and dielectric relaxation spectroscopy techniques. Strong interactions between the filler and the polymer suppress crystallinity (Tc, Xc) and affect significantly the evolution of the glass transition in the nanocomposites. The segmental relaxation associated with the glass transition consists of three contributions, arising, in the order of decreasing mobility, from the bulk (unaffected) amorphous polymer fraction (α relaxation), from polymer chains restricted between condensed crystal regions (αc relaxation), and from the semi‐bound polymers in an interfacial layer with strongly reduced mobility due to interactions with surface hydroxyls of silica and silica/titania nanoparticles (α′ relaxation). The evolution of surface affected CH3 groups, as well as the degree of interaction of PDMS molecules with surface hydroxyl groups as a function of treatment temperature, was assessed by Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis. The effectiveness of silica/PDMS and silica/titania/PDMS nanocomposites as hydrophobic coatings was investigated by static contact angle measurements. It was shown that the presence of titania nanoparticles and adsorbed PDMS promotes the hydrophobic properties of the PDMS coating after treatment in the 80–650°C range. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41154.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号