首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3885篇
  免费   342篇
  国内免费   82篇
电工技术   181篇
综合类   131篇
化学工业   2235篇
金属工艺   19篇
机械仪表   27篇
建筑科学   113篇
矿业工程   219篇
能源动力   1018篇
轻工业   29篇
水利工程   1篇
石油天然气   166篇
武器工业   1篇
无线电   5篇
一般工业技术   41篇
冶金工业   99篇
原子能技术   4篇
自动化技术   20篇
  2024年   1篇
  2023年   42篇
  2022年   99篇
  2021年   109篇
  2020年   125篇
  2019年   138篇
  2018年   98篇
  2017年   96篇
  2016年   125篇
  2015年   124篇
  2014年   251篇
  2013年   257篇
  2012年   296篇
  2011年   334篇
  2010年   251篇
  2009年   244篇
  2008年   168篇
  2007年   247篇
  2006年   177篇
  2005年   157篇
  2004年   144篇
  2003年   147篇
  2002年   76篇
  2001年   78篇
  2000年   84篇
  1999年   54篇
  1998年   65篇
  1997年   33篇
  1996年   46篇
  1995年   28篇
  1994年   29篇
  1993年   18篇
  1992年   18篇
  1991年   13篇
  1990年   8篇
  1989年   5篇
  1988年   5篇
  1987年   11篇
  1986年   3篇
  1985年   26篇
  1984年   21篇
  1983年   36篇
  1982年   10篇
  1980年   5篇
  1977年   1篇
  1951年   6篇
排序方式: 共有4309条查询结果,搜索用时 31 毫秒
1.
Biomass gasification technology under microwave irradiation is a new and novel method, and the energy conversion performances during the process play a guiding role in improving the energy conversion efficiencies and developing the gasification simulation models. In order to improve the energy utilization efficiency of microwave biomass gasification system, this study investigated and presented the energy conversion performances during biomass gasification process under microwave irradiation, and these were materialized through detailing (a) the energy conversion performance in the microwave heating stage, and (b) the energy conversion performance in the microwave assisted biomass gasification stage. Different forms of energies in the biomass microwave gasification process were calculated by the method given in this study based on the experimental data. The results showed that the useful energy (energy in silicon carbide (SiC), 18.73 kJ) accounted for 31.22% of the total energy input (electrical energy, 60.00 kJ) in the heating stage, and the useful energy (energy in the products, 758.55 kJ) accounted for 63.41% of the total energy input (electrical and biomass energy, 1196.28 kJ) in the gasification stage. During the whole biomass gasification process under microwave irradiation, the useful energy output (energy in the products, 758.55 kJ) accounted for 60.38% of the total energy input (electrical and biomass energy, 1256.28 kJ), and the energy in the gas (523.40 kJ) product played a dominate role in product energy (758.55 kJ). The energy loss mainly included the heat loss in the gas flow (89.20 kJ), magnetron loss (191.80 kJ) and microwave dissipation loss (198.00 kJ), which accounted for 7.10%, 15.27% and 15.76% of the total energy, respectively. The contents detailed in this study not only presented the energy conversion performances during microwave assisted gasification process but also supplied important data for developing gasification simulation models.  相似文献   
2.
In this study, lignin was gasified in supercritical water with catalysis of CuO–ZnO synthesized by deposition precipitation, co-precipitation and sol-gel methods. Sol-gel synthesized CuO–ZnO showed the highest catalytic performance, and the gasification efficiency was increased by 37.92% with it. The XRD, SEM-EDS and N2 adsorption/desorption analysis showed that the priority of the sol-gel catalyst was the smallest crystallite size, largest specific surface area and high dispersion. For sol-gel synthesized CuO–ZnO, the increase of CuO/ZnO ratio improved the gasification efficiency but reduced H2 selectivity. And the catalytic activity was reduced with the calcination temperature above 600 °C due to enlarged crystallites and reduced pores. During sol-gel preparation, both the addition of ethanol and PEG in the solvent reduced the agglomeration and improved the catalytic activity. With CuO–ZnO prepared with 1 g PEG + water as the solvent, the highest H2 yield of 6.86 mol/kg was obtained, which was over 1.5 times of that without catalyst.  相似文献   
3.
Municipal solid waste steam gasification and direct melting system is proposed in this study for H2 production and ash melting simultaneously. Part of the H2 generated in gasification is extracted for combustion with pure oxygen in the melting zone to provide the energy necessary for auto-thermal operation. A simulation model is developed with Aspen Plus to investigate the performance and optimum conditions of the system. For the feedstock with a lower heating value of 18.91 MJ/kg used in this study, 39.8% of the generated H2 needs to be extracted to maintain the heat balance of the system at the gasification temperature of 900 °C, melting temperature of 1400 °C, and S/M of 1. The net H2 yield is ~77.3 kg/t-MSW with a net cold gas efficiency of 49.1% under the same operating condition. An optimum operation condition for T (850–1000 °C) and S/M (0.6–1.0) is determined considering the balance between H2 production ability and the auto-thermal energy balance.  相似文献   
4.
The objective of this study is to investigate the impact of biomass feeding location on rice husk gasification for hydrogen production. By comparing the results between top-feed and bottom-feed of the feedstock of the fluidized bed biomass gasification at the reaction temperature between 600~1000 °C and ER = 0.2, 0.27, and 0.33 without steam, the optimum low heating value was increase by 2.35 kJ/g-rice husk by the top-feed to gasifier. Although the yield of hydrogen was decreased by 42% for the rice husk gasification by the top-feed operation, the yield of CO, CO2, and CH4 were highly increased, which enhancing the heating value of the effluent gas. The study results suggested the potential route of the biomass gasification at the different feeding location.  相似文献   
5.
The coupling between biomass gasification and Solid Oxide Fuel Cells can represent a sustainable and efficient system for electricity production. This work aims to develop a preliminary model for the operation of a tubular, electrolyte-supported fuel cell (SOFC) fed by a syngas mixture. The fuel required by the SOFC system is produced inside the energy generator box from an integrated biomass gasification system. This study stems from the European DB-SOFC project, that proposed the exploitation of the abundant biomasses deriving from agricultural residues for energetic purposes (as from olive oil and wine production). In this study, the main processes have been simulated to find a possible configuration to obtain a power value of 200 W. 25 cells were used in the model to produce the required power. The results showed that at 0.7 V it is possible to achieve 12.3 W, when the biomass gasification was integrated into the SOFC box, while it was possible to achieve 9.6 W when the system was fed by externally produced syngas.  相似文献   
6.
Benzothiophene (BT) is a key sulfur-containing intermediate product in the thermal conversion process of coal and heavy oil. The migration process of the sulfur element may affect the thermal utilization design of BT. In this paper, BT was used as a model compound to simulate the supercritical water gasification (SCWG) process by molecular dynamics with a reactive force field (ReaxFF) method, and the laws of hydrogen production and sulfur migration mechanisms were obtained. Increasing the molecule number of supercritical water (SCW) and increasing the reaction temperature can enhance the generation of hydrogen and promote the conversion of organic sulfur to inorganic sulfur. Water was the main source of H2, and H2S was the main gaseous sulfur-containing product. SCW had a certain degree of oxidation due to a large number of hydroxyl radicals, which could increase the valence of sulfur. The conversion process of BT in SCW was mainly divided into four stages, including thiophene ring-opening; sulfur separation or carbon chain broke with sulfur retention; carbon chain cleaved, and gas generation. The lumped kinetic parameters of the conversion of sulfur in BT to inorganic sulfur were calculated, and the activation energy was 369.98 kJ/mol, which was much lower than those under pyrolysis conditions. This article aims to clarify the synergistic characteristics of hydrogen production and sulfur migration in the SCWG process of BT from the molecular perspective, which is expected to provide a theoretical basis for pollutant directional removal during hydrogen production by sulfur-containing organic matters in SCW.  相似文献   
7.
8.
郭彦江 《煤化工》2020,48(2):16-18
针对我国建材行业传统使用的常压固定床煤气发生炉及化肥行业固定床间歇气化炉面临淘汰,无烟煤市场萎缩的情况,提出以晋城无烟煤为原料,利用赛鼎碎煤加压气化技术,生产适合建材行业大规模使用的工业燃气。以无烟煤为原料的河北沙河年产26亿m^3工业清洁燃气项目为基础,对无烟煤与天然气价格、项目经济性的关系进行了分析,结果表明,以晋城无烟块煤运到河北沙河的到厂价935元/t计算,盈亏平衡天然气价约2.26元/m^3;以沙河工业天然气到户售价2.5元/m^3计算,盈亏平衡到厂煤价约1 077元/t,项目经济性较好。  相似文献   
9.
《云南化工》2020,(1):117-118
水煤浆气化装置运行问题较多。对煤浆制备单元进行煤浆提浓改造,通过与类似项目生产装置对比,解决存在的问题,使甲醇产品能根据市场价格调节其产量,提高装置盈利能力。  相似文献   
10.
Aspen Plus has become one of the most common process simulation tools for both academia and industrial applications. In the last decade, the number of the papers on Aspen Plus modeling of biomass gasification has significantly increased. This review focuses on recent developments and studies on modeling biomass gasification in Aspen Plus including key aspects such as tar formation and model validation. Accordingly, challenges in modeling due to specific assumptions and limitations will be highlighted to provide a useful basis for researchers and end-users for further process modeling of biomass gasification in Aspen Plus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号