首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8763篇
  免费   813篇
  国内免费   606篇
电工技术   169篇
综合类   498篇
化学工业   3023篇
金属工艺   727篇
机械仪表   84篇
建筑科学   471篇
矿业工程   257篇
能源动力   270篇
轻工业   1974篇
水利工程   163篇
石油天然气   1009篇
武器工业   53篇
无线电   144篇
一般工业技术   603篇
冶金工业   429篇
原子能技术   178篇
自动化技术   130篇
  2024年   20篇
  2023年   152篇
  2022年   240篇
  2021年   367篇
  2020年   314篇
  2019年   272篇
  2018年   250篇
  2017年   309篇
  2016年   352篇
  2015年   331篇
  2014年   538篇
  2013年   531篇
  2012年   789篇
  2011年   631篇
  2010年   472篇
  2009年   514篇
  2008年   335篇
  2007年   547篇
  2006年   506篇
  2005年   397篇
  2004年   402篇
  2003年   350篇
  2002年   289篇
  2001年   246篇
  2000年   203篇
  1999年   165篇
  1998年   139篇
  1997年   84篇
  1996年   88篇
  1995年   68篇
  1994年   56篇
  1993年   47篇
  1992年   39篇
  1991年   28篇
  1990年   32篇
  1989年   19篇
  1988年   6篇
  1987年   12篇
  1986年   5篇
  1985年   8篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1975年   2篇
  1959年   3篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
1.
《Ceramics International》2021,47(20):28203-28209
Vanadium carbide (VC) as excellent ceramic and functional material is usually prepared by carbothermal reduction of V2O5 which must be extracted from a typical V slag by complex processes. Pollutants, such as ammonia-nitrogen wastewater, NH3 and CO2 are inevitably discharged. A novel and green method for VC preparation was proposed by one-step co-electrolysis of soluble NaVO3 and CO2 in molten salt. It was found that VC with high purity was easily obtained by reducing electrolysis temperature and CO2 flow rate to 600 °C and 10 mL min−1 at 3.0 V. Besides VC with particles and layered stacking structure in products, a small amount of carbon and oxygen elements existed. The atomic percentage contents of C, V, and O elements in VC were about 50.0%, 44.5% and 3.8%, respectively. During electrolysis, CO32− and VO3 was reduced at about −0.55 V (vs. Ag/AgCl) and −1.38 V (vs. Ag/AgCl), respectively. CO32− ions were more easily reduced than VO3, and was firstly reduced to CO22− and then converted to C. Then, VC was prepared by two routes from CO2 and NaVO3. One route is that VO3 ions are firstly electroreduced to VO2 ions and then are further electroreduced to VC with C. Another route is that VO3 ions are electroreduced to V which in-situ reacted with C to VC. Both VO3 and CO32− ions are electroreduced by two-step process. In final, VC is in-situ deposited on cathode. It provides a novel and green way to prepare VC and also achieves the high value-added utilization of vanadium slag and CO2.  相似文献   
2.
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.  相似文献   
3.
采用水溶液聚合法制备了低分子量聚丙烯酸钾(PAAK),并作为新型消焰剂加入单基发射药中。通过火焰原子吸收光谱法测试了PAAK中钾的含量;用乌氏黏度计测定了特性黏度;采用DSC法研究不同pH值的PAAK与硝化棉(NC)的相容性;利用充氮氧弹法对添加PAAK、硝酸钾KNO3、硫酸钾K2SO4的单基发射药的燃烧残渣进行了对比研究。结果表明,合成的PAAK中,钾的质量分数为15.21%,相对分子量在3 000左右,有利于和NC均匀混合,且在中性或微碱性(pH=7.0~7.5)的情况与NC相容性良好。与传统的KNO3、K2SO4消焰剂相比,PAAK能够和NC均匀混合,制备均质透明的单基发射药;PAAK发射药的燃烧残渣最少,占发射药质量的0.18%。  相似文献   
4.
溶剂萃取法是盐湖提锂的重要工艺方法。采用磷酸三丁酯(TBP)/1-丁基-3-甲基咪唑双三氟甲基磺酰亚胺盐([C4mim][NTf2])离子液体体系对高镁锂比盐湖卤水中的锂进行萃取分离提取实验,对负载有机相的洗涤和反萃过程进行了研究。萃取实验:在TBP与[C4mim][NTf2]体积比为9∶1、相比(有机相与水相的体积比)为2∶1条件下,锂离子与其他离子的分离系数分别为β(锂/钠)=94.70、β(锂/钾)=148.85、β(锂/镁)=131.81。洗涤实验:系统考察了洗涤剂种类及浓度、相比、洗涤次数等因素对杂质离子洗脱率的影响,结果发现氯化锂和盐酸的混合溶液是从负载有机相中洗涤除去杂质离子的有效洗涤剂。洗涤过程适宜条件:洗涤剂中氯化锂浓度为4 mol/L、盐酸浓度为0.5 mol/L,相比为5∶1,洗涤次数为2次。反萃实验:用稀盐酸(1.0 mol/L)对负载有机相进行反萃取,在相比为1∶1条件下,单级反萃率达到97.81%。研究表明,离子液体体系作为一种新型萃取体系,在高镁锂比盐湖卤水中提取锂具有较好的应用前景。  相似文献   
5.
摘要:为了研究300M超高强钢在中性盐雾环境中的腐蚀行为及腐蚀机制,采用失重法,宏观、微观腐蚀形貌分析,三维表面轮廓分析及电化学分析的研究方法,来表征腐蚀实验现象并进行分析。结果表明:300M超高强钢在中性盐雾环境中的腐蚀产物为FeOOH、Fe2O3、Fe(OH)3和Fe3O4;腐蚀速率随着腐蚀时间逐渐降低,腐蚀后期(72h)腐蚀速率降低50%;腐蚀初期以点蚀为主,点蚀坑通过横向扩展,逐渐发展为后期的均匀腐蚀,腐蚀表面形貌呈沟壑状;外腐蚀层对基体的保护能力很弱,Cr元素在锈层靠近基体的一侧偏聚使内腐蚀层具有一定的抗腐蚀性。  相似文献   
6.
基于序批式活性污泥法(SBR)工艺,将镁盐改性活性炭(MgO-PAC)与传统活性炭(PAC)混合而成MPAC材料,用于处理生活与工业混合污水。通过连续30 d的运行实验,探讨了MPAC材料对生活与工业混合污水中COD、NH4^+-N和TP的去除效果以及对污泥的比耗氧速率、沉降性能和微生物多样性的影响。结果表明,投加MPAC材料对污水中COD的去除率提升了12.7百分点,对TP的去除率提升了17.5百分点,对NH4^+-N的去除率超过86.4%。投加MPAC后处理效果更好的重要原因,在于MPAC使得活性污泥的沉降性能和比耗氧速率得到明显改善,也提升了污泥的微生物丰度。MPAC对活性污泥处理生活与工业混合污水具有强化作用。  相似文献   
7.
8.
《Ceramics International》2021,47(22):31268-31276
The relationship between the tensile strength of corroded domestic second-generation (2ed-gen) SiC fibers at various temperatures for 500 h in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt and the typical microstructure was studied. Weibull theory was used to analyze the critical defects that caused the tensile fracture, and the microstructure of fibers before and after corrosion was characterized. It is concluded that the decrease of tensile strength after corrosion at 800 °C is caused by the surface injury of fibers, which led to the shift of critical defects from the internal defects of virgin fibers to surface defects. Moreover, corrosion at higher temperature accelerates the corrosion process and dissolve the surface O-contained layer thoroughly. This shifts the critical defects back to the internal defects and will be helpful for the recovery of tensile strength of corroded fibers at the higher temperature.  相似文献   
9.
Lithium‐rich disordered rock‐salt oxides have attracted great interest owing to their promising performance as Li‐ion battery cathodes. While experimental and theoretical efforts are critical in advancing this class of materials, a fundamental understanding of key property changes upon Li extraction is largely missing. In the present study, single‐crystal synthesis of a new disordered rock‐salt cathode material, Li1.3Ta0.3Mn0.4O2 (LTMO), and its use as a model compound to investigate Li concentration–driven evolution of local cationic ordering, charge compensation, and chemical distribution are reported. Through the combined use of 2D and 3D X‐ray nanotomography, it is shown that Li removal accompanied by oxygen oxidation is correlated with the development of morphological defects such as particle cracking. Chemical heterogeneity, quantified by subparticle level distribution of Mn valence state, is minimal during Mn redox, which drastically increases upon the formation of cracks during oxygen redox. Density functional theory and bond valence sum mismatch calculations reveal the presence of local short‐range ordering in the pristine oxide, which gradually disappears along with the extraction of Li. The study suggests that with cycling the transformation into true cation–disordered state can be expected, which likely impacts the voltage profile and obtainable energy density of the oxide cathodes.  相似文献   
10.
使用钡盐法对铬废水处理,对p H值在废水中的初值、反映温度计量结果、重铬酸钾的浓度等,在回收六价铬的影响效果进行了分析。对废水中的六价铬使用了源自吸收的分光光度法回收。经过处理后,废水中的p H为8~9的时候,六价铬的回收在9%。废水中的六价铬随着其浓度不断上升增加。超过10℃的时候,六价铬的反应没有非常大的影响,但是当温度降低到10℃以下的时候,回收率就逐步下降了。经过处理之后,六价铬的浓度达到了0.276 7 mg/L,达到了相关规定的标准。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号