首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
进入21世纪后,宽禁带半导体GaN微电子学发展迅速,SiC基GaN微电子学已成为微波电子学的发展主流,且正在向更高频率和更高功率密度的新一代GaN微波功率器件发展。为了降低成本,Si基GaN微电子学应运而生,在5G通信、电动汽车等绿色能源应用发展的带动下,Si基GaN微电子学已进入产业化快速发展阶段。介绍了Si基GaN微电子学在射频Si基GaN高电子迁移率晶体管(HEMT)新器件结构、工艺与可靠性,Si基GaN HEMT单片微波集成电路(MMIC),Si基E模功率GaN HEMT结构设计,大尺寸Si基GaN HEMT工艺,Si基GaN功率开关器件的可靠性,Si基GaN功率变换器的单片集成和高频开关Si基GaN器件的应用创新等工程化、产业化方面的最新技术进展。分析和评价了低成本Si基GaN微电子学工程化和产业化的发展态势。  相似文献   

2.
采用50 nm GaN HEMT技术实现了一款太赫兹波有源平衡式二倍频器单片微波集成电路(MMIC)。通过在输入端使用巴伦,可以确保二倍频器良好的基波抑制性能。在没有任何后置放大器的情况下,当输入功率为22 dBm时,在205 GHz的输出频率下二倍频器的最大输出功率为12 dBm。该MMIC芯片尺寸为2.0 mm×1.8mm,可方便地集成到多功能芯片中。  相似文献   

3.
进入21世纪后,宽禁带半导体GaN微电子学发展迅速,SiC基GaN微电子学已成为微波电子学的发展主流,且正在向更高频率和更高功率密度的新一代GaN微波功率器件发展。为了降低成本,Si基GaN微电子学应运而生,在5G通信、电动汽车等绿色能源应用发展的带动下,Si基GaN微电子学已进入产业化快速发展阶段。介绍了Si基GaN微电子学在射频Si基GaN高电子迁移率晶体管(HEMT)新器件结构、工艺与可靠性,Si基GaN HEMT单片微波集成电路(MMIC),Si基E模功率GaN HEMT结构设计,大尺寸Si基GaN HEMT工艺,Si基GaN功率开关器件的可靠性,Si基GaN功率变换器的单片集成和高频开关Si基GaN器件的应用创新等工程化、产业化方面的最新技术进展。分析和评价了低成本Si基GaN微电子学工程化和产业化的发展态势。  相似文献   

4.
<正>AlGaN/GaN高电子迁移率晶体管(HEMT)以其高输出功率密度、高电压工作和易于宽带匹配等优势将成为下一代高频固态微波功率器件。微波功率器件主要有内匹配功率管和功率单片微波集成电路(MMIC)两种结构形式,功率MMIC尽管其研制成本相对较高,但功率MMIC可实现宽带匹配,同时功率MMIC的体积较内匹配功率管小得多,是满足诸如X  相似文献   

5.
AlGaN/GaN高电子迁移率晶体管(HEMT)以其高输出功率密度、高电压工作和易于宽带匹配优势将成为下一代高频固态微波功率器件.  相似文献   

6.
AlGaN/GaN高电子迁移率晶体管(HEMT)以其高输出功率密度、高电压工作和易于宽带匹配等优势将成为下一代高频固态微波功率器件.微波功率器件主要有内匹配功率管和功率单片微波集成电路(MMIC)两种结构形式,功率MMIC尽管其研制成本相对较高,但功率MMIC可实现宽带匹配,同时功率MMIC的体积较内匹配功率管小得多,是满足诸如X波段TlR组件应用不可或缺的结构形式.功率MMIC的结构形式主要有微带和共面波导(CPW)两种,相比于CPW结构,微带结构的MMIC芯片面积更小,特别是对于大栅宽器件,微带结构的通孔接地更有利于寄生参量的减小,有利于提高MMIC的性能,因此微带结构也是应用更为广泛的MMIC结构形式.  相似文献   

7.
设计了一款Ku波段工作频率为13.0~15.5GHz的GaN MMIC高线性功率放大器,采用0.25μm GaN HEMT工艺,电路采用两级放大器的结构。通过两种不同的末级匹配网络的设计,对比分析匹配网络的设计对功率放大器效率与线性度的影响。一种是匹配到最佳功率附加效率(PAE)的末级匹配网络,一种则是匹配到最佳线性度的末级匹配网络(用最佳三阶交调产物与载波比值(IM3)来表示),级间和输入级匹配网络也尽量达到低损耗、高线性指标,从而提高整体电路的线性度,并尽量使得效率不恶化。测试结果表明,功率放大器的最大输出功率可以达到37.5dBm,匹配到最佳PAE的功率放大器功率附加效率均大于32%,最大可以达到36%,匹配到最佳IM3的功率放大器PAE低了2到4个百分点,线性度指标IM3则高了1到2个dBc。该测试结果表明,对于高线性功率放大器,末级匹配网络可以在最佳PAE点的基础上适当地向最佳IM3点靠近,以逼近更好的线性度指标,但若距离最佳IM3太近,PAE则会有较大的恶化。  相似文献   

8.
基于0.15μm GaN HEMT工艺,设计并实现了一款超宽带毫米波GaN低噪声放大器(LNA)微波单片集成电路(MMIC)。该放大器采用4级级联结构,其输入和输出端均采用5阶匹配网络,提高了放大器的匹配带宽;由微带线、短截线和电容组成的无电阻输入匹配网络减小了输入热噪声,优化了电路的噪声系数;在级间匹配网络中引入电阻元件,通过降低Q值扩展电路工作带宽。采用SiC衬底0.15μm AlGaN/GaN HEMT工艺进行流片,在片测试结果表明,在频率14~34 GHz时,该LNA的增益为(18±1)dB、噪声系数小于4.5 dB,在频率为39 GHz时1 dB压缩点输出功率为19 dBm,最大输入承受功率为30 dBm,相对工作带宽大于100%。研制的MMIC LNA面积为1.71 mm2,功耗为1.05 W。  相似文献   

9.
10.
报道了一款采用三级放大结构的Ku波段高效率GaN功率放大器芯片。放大器设计中通过电路布局优化改善功放芯片内部相位一致性,提高末级晶胞的合成效率,最终实现整个放大器功率及效率的提升。经匹配优化后放大器在14.6~17.0GHz频带内脉冲输出功率大于20 W,功率附加效率大于36%,最高39%。功率放大器芯片采用0.25μm GaN HEMT 101.6mm(4英寸)圆片工艺制造,芯片尺寸为2.3mm×1.9mm。  相似文献   

11.
X波段GaN单片电路低噪声放大器   总被引:1,自引:1,他引:0  
采用0.25μm GaN HEMT制备工艺在AlGaN/GaN异质结材料上研制了高性能X波段GaN单片电路低噪声放大器.GaN低噪声单片电路采取两级微带线结构,10V偏压下芯片在X波段范围内获得了低于2.2 dB的噪声系数,增益达到18 dB以上,耐受功率达到了27 dBm.在耐受功率测试中发现GaN低噪声HEMT器件...  相似文献   

12.
介绍了氮化镓微电子器件的优势和现状。提出将GaNHEMT作为微波器件用于混合微波集成电路(MIC)和微波单片集成电路(MMIC),在射频输出功率、器件优值等方面,均具有明显优点,并列举了成功的例子。为了加快发展MMIC,必须解决好几个关键问题,即提高材料质量和尺寸,完善制造工艺,克服器件电流下降、增益过早饱和与射频输出功率退化等现象。  相似文献   

13.
Ku波段宽带氮化镓功率放大器MMIC   总被引:1,自引:0,他引:1       下载免费PDF全文
余旭明  洪伟  王维波  张斌 《电子学报》2015,43(9):1859-1863
基于0.25μm栅长GaN HEMT工艺,采用三级放大拓扑结构设计了一款Ku波段GaN功率放大器.放大器设计从建立大信号模型出发,输出匹配网络和级间匹配网络均采用电抗匹配减小电路的损耗,从而提高整体放大器的功率效率.测试结果表明,该放大器在14.6~18GHz频带内,小信号增益30dB,脉冲饱和输出功率达15W,功率附加效率(PAE)大于32%;在14.8GHz频点处,放大器的峰值功率达19.5W,PAE达39%.该结果表明GaN MMIC具有高频高功率高效率的优势,具有广阔的应用前景.  相似文献   

14.
Ka波段22dBm氮化镓单片集成放大器   总被引:1,自引:1,他引:0  
设计了CPW式Ka波段氮化镓单片集成放大器,并基于国内的GaN外延片和工艺完成了芯片的制备。据我们所知,这是国内首次报道的Ka波段氮化镓单片集成放大器。该单级集成放大器使用了一个栅长0.25μm,栅宽275μm的AlGaN/GaN HEMT。在Vds=10V连续波测试条件下,放大器的工作带宽为1.5GHz。其中在26.5GHz的线性增益为6.3dB,最大输出功率22dBm,最大附加效率9.5%。该MMIC所使用的AlGaN/GaN HEMT在Ka波段、Vds=10V条件下的输出功率密度达到1W/mm。  相似文献   

15.
A Ka-band GaN amplifier MMIC has been designed in CPW technology,and fabricated with a domestic GaN epitaxial wafer and process.This is,to the best of our knowledge,the first demonstration of domestic Kaband GaN amplifier MMICs.The single stage CPW MMIC utilizes an AlGaN/GaN HEMT with a gate-length of 0.25μm and a gate-width of 2×75μm.Under Vds=10 V,continuous-wave operating conditions,the amplifier has a 1.5 GHz operating bandwidth.It exhibits a linear gain of 6.3 dB,a maximum output power of 22 dBm and a peak PAE of 9.5%at 26.5 GHz.The output power density of the AlGaN/GaN HEMT in the MMIC reaches 1 W/mm at Ka-band under the condition of Vds=10 V.  相似文献   

16.
A 6‐GHz‐to‐18‐GHz monolithic nonuniform distributed power amplifier has been designed using the load modulation of increased series gate capacitance. This amplifier was implemented using a 0.25‐μm AlGaN/GaN HEMT process on a SiC substrate. With the proposed load modulation, we enhanced the amplifier's simulated performance by 4.8 dB in output power, and by 13.1% in power‐added efficiency (PAE) at the upper limit of the bandwidth, compared with an amplifier with uniform gate coupling capacitors. Under the pulse‐mode condition of a 100‐μs pulse period and a 10% duty cycle, the fabricated power amplifier showed a saturated output power of 39.5 dBm (9 W) to 40.4 dBm (11 W) with an associated PAE of 17% to 22%, and input/output return losses of more than 10 dB within 6 GHz to 18 GHz.  相似文献   

17.
王冲  刘道广  郝跃  张进城 《微电子学》2005,35(3):245-247
介绍了几类常见的基于AlGaN/GaN HEMT的微波功率放大器;论述了制造微波功率放大器的两种关键工艺技术——倒装芯片集成(FC-IC)和共平面线(CPW);分析了自行研制的微波功率放大器核心器件AlGaN/GaN HEMT的性能。  相似文献   

18.
我们报道了一个三级W波段GaN MMIC功率放大器。考虑到W波段MMIC的耦合效应,所有的匹配电路和偏置电路都是先进行电路仿真以后,再用3D电磁场仿真软件进行系统的仿真。此MMIC功率放大器在频率为86.5GHz下输出功率能达到257mW,相应的功率附加效率(PAE)为5.4%,相应的功率增益为6.1dB。功率密度为459 mW/mm。另外,此MMIC功率放大器在83 GHz到90 GHz带宽下有100mW以上的输出功率。以上特性都是在漏极电压为12V时测试得到。  相似文献   

19.
报道了一款采用两级拓扑结构的2~4 GHz宽带高功率单片微波功率放大器芯片.放大器采用了微带结构,并使用电抗匹配进行设计,重点在于宽带功率效率平坦化设计.经匹配优化后放大器在2~4 GHz整个频带内脉冲输出功率大于35 W,小信号增益达到22 dB,在2.4 GHz频点处峰值输出功率达到40 W,对应的功率附加效率为3...  相似文献   

20.
S波段宽带GaN芯片高功率放大器的应用研究   总被引:2,自引:1,他引:1       下载免费PDF全文
介绍了一种采用阻抗匹配技术和功率合成技术相结合的方法,利用4只GaN HEMT功率芯片研制成功的S波段宽带、大功率、高功率密度放大器。具体的技术途径是通过预匹配技术提高芯片输入阻抗,运用切比雪夫匹配法实现宽带阻抗匹配,优化隔离电阻增加合成支路间的隔离度,同时提高电路的稳定性。放大器最终实现的性能指标是:脉宽300μs,占空比10%,S波段30%相对带宽内脉冲输出功率大于65W,附加效率大于45%。由此进一步表明了此类GaN芯片高功率放大器相对于Si和GaAs功率器件放大器在带宽和功率密度等性能上具有较大的优势并具有广阔的工程应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号