首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150920篇
  免费   16339篇
  国内免费   11949篇
电工技术   8176篇
技术理论   11篇
综合类   12031篇
化学工业   24865篇
金属工艺   8190篇
机械仪表   8404篇
建筑科学   5577篇
矿业工程   3888篇
能源动力   3185篇
轻工业   6272篇
水利工程   2755篇
石油天然气   5766篇
武器工业   1513篇
无线电   20052篇
一般工业技术   18807篇
冶金工业   4402篇
原子能技术   1926篇
自动化技术   43388篇
  2024年   549篇
  2023年   2569篇
  2022年   4514篇
  2021年   5583篇
  2020年   5263篇
  2019年   4546篇
  2018年   4038篇
  2017年   4931篇
  2016年   5518篇
  2015年   6073篇
  2014年   8933篇
  2013年   8820篇
  2012年   10121篇
  2011年   12321篇
  2010年   9348篇
  2009年   9994篇
  2008年   9562篇
  2007年   10746篇
  2006年   9244篇
  2005年   8287篇
  2004年   6962篇
  2003年   6149篇
  2002年   4975篇
  2001年   3490篇
  2000年   3198篇
  1999年   2475篇
  1998年   1934篇
  1997年   1575篇
  1996年   1406篇
  1995年   1125篇
  1994年   1003篇
  1993年   756篇
  1992年   564篇
  1991年   488篇
  1990年   365篇
  1989年   308篇
  1988年   218篇
  1987年   178篇
  1986年   179篇
  1985年   154篇
  1984年   108篇
  1983年   118篇
  1982年   113篇
  1981年   68篇
  1980年   62篇
  1979年   67篇
  1978年   24篇
  1977年   38篇
  1976年   30篇
  1974年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
High-purity mullite ceramics, promising engineering ceramics for high-temperature applications, were fabricated using transient liquid phase sintering to improve their high-temperature mechanical properties. Small amounts of ultrafine alumina or silica powders were uniformly mixed with the mullite precursor depending on the silica-alumina ratio of the resulting ceramics to allow for the formation of a transient liquid phase during sintering, thus, enhancing densification at the early stage of sintering and mullite formation by the reaction between additional alumina and the residual glassy phase (mullitization) at the final stage of sintering. The addition of alumina powder to the silica-rich mullite precursor resulted in a reaction between the glassy silica and alumina phases during sintering, thereby forming a mullite phase without inhibiting densification. The addition of fine silica powder to the mullite single-phase precursor led to densification with an abnormal grain growth of mullite, whereas some of the added silica remained as a glassy phase after sintering. The resulting mullite ceramics prepared using different powder compositions showed different sintering behaviors, depending on the amount of alumina added. Upon selecting an optimum process and the amount of alumina to be added, the pure mullite ceramics obtained via transient liquid phase sintering exhibited high density (approximately 99%) and excellent high-temperature flexural strength (approximately 320 MPa) at 1500 °C in air. These results clearly demonstrate that pure mullite ceramics fabricated via transient liquid phase sintering with compositions close to those of stoichiometric mullite could be a promising process for the fabrication of high-temperature structural ceramics used in an ambient atmosphere. The transient liquid phase sintering process proposed in this study could be a powerful processing tool that allows for the preparation of superior high-temperature structural ceramics used in the ambient processing atmosphere.  相似文献   
2.
3.
《Ceramics International》2022,48(11):15207-15217
SCAPS solar cell simulation program was applied to model an inverted structure of perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport layer. The Cu-doped Ni1-xO film were made by co-sputtering deposition under different deposition conditions. By increasing the amount of the Cu-dopant, the film crystallinity enhanced whereas the bandgap energy decreased. The transmittance of the thin films decreased significantly by increasing the sputtering power of copper. High quality, uniform, compact, and pin-hole free films with low surface roughness were achieved. The structural, chemical, surface morphology, optical, electrical, and electronic properties of the Cu doped Ni1-xO films were used as input parameters in the simulation of Pb-based (MAPbI3-xClx) and Pb-free (MAGeI3) perovskite solar cells. Simulation results showed that the performance of both Pb-based and Pb-free perovskite solar cell devices significantly enhanced with Cu-doped Ni1-xO film. The highest power conversion efficiency (PCE) for the Pb-free perovskite solar cell is 8.9% which is lower than the highest PCE of 17.5% for the Pb-based perovskite solar cell.  相似文献   
4.
《Ceramics International》2022,48(17):24383-24392
We propose a novel approach for manufacturing dual-scale porosity alumina structures by UV curing-assisted 3D plotting of a specially formulated alumina feedstock using a thermo-regulated phase separable, photocurable camphene/triethylene glycol dimethacrylate (TEGDMA) vehicle. In particular, 3D plotting process was conducted at - 5 °C, and thus an alumina suspension prepared using liquid camphene/TEGDMA at room temperature could undergo phase separation, resulting in camphene crystals surrounded by walls comprised of liquid photopolymer enclosing alumina particles. To enhance the shape retention ability of extruded filaments, polystyrene (PS) polymer was used as the tackifier. The phase-separated feedrod could be extruded favorably through a nozzle and rapidly photopolymerized by UV light during the 3D plotting process. Three-dimensionally interconnected macropores were tightly constructed, which were separated by microporous alumina filaments, where micropores were created by the removal of camphene crystals via freeze-dying. The macroporosity of porous alumina ceramics was controlled by adjusting the distance between deposited filaments, while their microporosity was kept constant, leading to tightly tailored overall porosity and mechanical properties.  相似文献   
5.
Proper management of the liquid water and heat produced in proton exchange membrane (PEM) fuel cells remains crucial to increase both its performance and durability. In this study, a two-phase flow and multicomponent model, called two-fluid model, is developed in the commercial COMSOL Multiphysics® software to investigate the liquid water heterogeneities in large area PEM fuel cells, considering the real flow fields in the bipolar plate. A macroscopic pseudo-3D multi-layers approach has been chosen and generalized Darcy's relation is used both in the membrane-electrode assembly (MEA) and in the channel. The model considers two-phase flow and gas convection and diffusion coupled with electrochemistry and water transport through the membrane. The numerical results are compared to one-fluid model results and liquid water measurements obtained by neutron imaging for several operating conditions. Finally, according to the good agreement between the two-fluid and experimentation results, the numerical water distribution is examined in each component of the cell, exhibiting very heterogeneous water thickness over the cell surface.  相似文献   
6.
The distribution of hydrogen entering an Fe sheet under a droplet of NaCl solution was successfully visualized using a hydrogenochromic sensor consisting of a polyaniline layer and a Ni intermediate layer. At the initial stage of corrosion, the hydrogen entry was barely confirmed. The hydrogen entry was observed as the corrosion proceeded, and the preferential hydrogen entry site corresponded to the rust-formed area. It was postulated that the hydrogen entry is promoted by the decrease in pH due to the hydrolysis reactions of Fe ions under the rust. The hydrogenochromic sensor paves the way for the visualization of the hydrogen entry into metals under corrosion conditions.  相似文献   
7.
Polarization imaging can retrieve inaccurate objects’ 3D shapes with fine textures, whereas coarse but accurate depths can be provided by binocular stereo vision. To take full advantage of these two complementary techniques, we investigate a novel 3D reconstruction method based on the fusion of polarization imaging and binocular stereo vision for high quality 3D reconstruction. We first generate the polarization surface by correcting the azimuth angle errors on the basis of registered binocular depth, to solve the azimuthal ambiguity in the polarization imaging. Then we propose a joint 3D reconstruction model for depth fusion, including a data fitting term and a robust low-rank matrix factorization constraint. The former is to transfer textures from the polarization surface to the fused depth by assuming their relationship linear, whereas the latter is to utilize the low-frequency part of binocular depth to improve the accuracy of the fused depth considering the influences of missing-entries and outliers. To solve the optimization problem in the proposed model, we adopt an efficient solution based on the alternating direction method of multipliers. Extensive experiments have been conducted to demonstrate the efficiency of the proposed method in comparison with state-of-the-art methods and to exhibit its wide application prospects in 3D reconstruction.  相似文献   
8.
A key element in solving real-life data science problems is selecting the types of models to use. Tree ensemble models (such as XGBoost) are usually recommended for classification and regression problems with tabular data. However, several deep learning models for tabular data have recently been proposed, claiming to outperform XGBoost for some use cases. This paper explores whether these deep models should be a recommended option for tabular data by rigorously comparing the new deep models to XGBoost on various datasets. In addition to systematically comparing their performance, we consider the tuning and computation they require. Our study shows that XGBoost outperforms these deep models across the datasets, including the datasets used in the papers that proposed the deep models. We also demonstrate that XGBoost requires much less tuning. On the positive side, we show that an ensemble of deep models and XGBoost performs better on these datasets than XGBoost alone.  相似文献   
9.
In this paper, we present LinkingPark, an automatic semantic annotation system for tabular data to knowledge graph matching. LinkingPark is designed as a modular framework which can handle Cell-Entity Annotation (CEA), Column-Type Annotation (CTA), and Columns-Property Annotation (CPA) altogether. It is built upon our previous SemTab 2020 system, which won the 2nd prize among 28 different teams after four rounds of evaluations. Moreover, the system is unsupervised, stand-alone, and flexible for multilingual support. Its backend offers an efficient RESTful API for programmatic access, as well as an Excel Add-in for ease of use. Users can interact with LinkingPark in near real-time, further demonstrating its efficiency.  相似文献   
10.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号