首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fretting fatigue behavior of unpeened and shot-peened Ti–6Al–4 V was investigated using a dual-actuator test setup which was capable of applying an independent pad displacement while maintaining a constant cyclic load on the specimen. The fretting regime was identified based on the shape of the hysteresis loop of tangential force versus relative slip range and the evolution of normalized tangential force. The fretting regime changed from stick to partial slip and then to gross slip with increasing relative slip range, and the transition from partial to gross slip occurred at a relative slip range of 50–60 μm regardless of the applied cyclic load, surface treatment, contact load and contact geometry. The fretting fatigue life initially decreased as the relative slip range increased and reached a minimum value, and then increased with increase of the relative slip range due to the transition in fretting regime from partial slip to gross slip. Shot-peened specimens had longer fatigue life than unpeened specimens at a given relative slip range, but the minimum fatigue life was found to be at the same value of relative slip range for both shot-peened and unpeened specimens. Tangential force was directly related to relative slip and this relationship was independent of other fretting variables.  相似文献   

2.
The influence of oil lubrication on the fretting wear behaviors of 304 stainless steel flat specimens under different fretting strokes and normal loads has been investigated. The results proved that fretting regimes and fretting wear behaviors of 304 stainless steels were closely related to the fretting conditions. In general, the increase in normal load could increase wear damage during sliding wear. However, according to the results, a significant reduction in wear volume and increase in friction coefficient was observed when the normal load was increased to critical values of 40 and 50 N at a fretting stroke of 50 μm due to the transformation of the fretting regime from a gross slip regime to partial slip regime. Only when the fretting stroke further increased to a higher value of 70 μm at 50 N, fretting could enter the gross slip regime. There was low wear volume and a high friction coefficient when fretting was in the partial slip regime, because oil penetration was poor. The wear mechanisms were fatigue damage and plastic deformation. There was high wear volume and low friction coefficient when fretting was in the gross slip regime, because the oil could penetrate into the contact surfaces. Unlike the wear mechanisms in the partial slip regime, fretting damage of 304 stainless steels was mainly caused by abrasive wear in the gross slip regime.  相似文献   

3.
Abstract

The tension–tension fretting fatigue tests of steel wires were performed on a self-made fretting fatigue test equipment under contact loads ranging from 40 to 70 N and a strain ratio of 0·8. The results showed that when the contact load increased, the fretting regime of steel wires transformed from gross slip regime to mixed fretting regime. The fretting fatigue life in the mixed fretting regime was significantly lower than that in the gross slip regime. The main fretting wear mechanisms in the gross slip regime, where there were serious fretting damage and a lot of wear debris, were abrasive wear and fatigue wear. Microcracks were observed in the fretting scar of the mixed fretting regime, and the main fretting wear mechanisms were adhesive and fatigue wears. The fretting wear scar was the fatigue source region, and the fatigue fracture surface could be divided into three regions.  相似文献   

4.
A finite element model of a cylindrical Hertzian contact on a test sample subjected to alternating shear loading has been developed. The model has been used to investigate shear stress distributions at the contact during variable amplitude fretting fatigue for a load configuration in which the sample cyclic stress is applied in phase with shear force on the cylindrical contact. It has been found that during constant amplitude cyclic loading, shear stress distributions and positions of the stick-slip boundary at load maxima and minima remain fixed. Application of overloads changes the stress distribution and the position of the stick-slip boundary attained by loading of subsequent cycles. The largest cycle maximum stress determines the position of the stick-slip boundary adopted by subsequent smaller amplitude cycles. In general variable amplitude fretting fatigue the position of the stick-slip boundary will be changing with each load cycle. Hence fatigue initiation processes will occur at locations dispersed over an extended region over the contact. The implications of this behaviour for models for fretting fatigue life calculation are explored.  相似文献   

5.
在自制的微动疲劳试验机上开展中性腐蚀环境下单根钢丝的微动疲劳实验,考察在相同接触载荷下,不同振幅对钢丝的微动疲劳行为的影响,并用扫描电子显微镜观察疲劳钢丝的磨痕和断口形貌,研究钢丝微动疲劳断裂机制.结果表明:在较大的振幅下,钢丝的微动区均处于滑移状态,而在较小振幅下,钢丝的微动区从滑移状态逐渐转变为黏着状态;磨损机制主要为磨粒磨损、疲劳磨损、腐蚀磨损和塑性变形;钢丝疲劳寿命随着微动振幅的增大而减小;钢丝的疲劳断口可分为3个区域,即疲劳源区、裂纹扩展区及瞬间断裂区.  相似文献   

6.
The fretting wear behavior of Cu–Al coating was investigated with and without fatigue load under the dry and wet (lubricated) contact conditions. The Cu–Al coating was plasma deposited on titanium alloy, Ti-6Al-4V. Fretting regime was determined from the shape of fretting hysteresis loop. Fretting regime changed from partial slip to total (gross) slip at ∼15 μm of the applied relative displacement, and this transition point was independent of fatigue loading and contact surface (lubricated versus dry) conditions. Wet contact condition reduced frictional force during cycling, as evidenced by the lower-tangential force. Wear analysis using the accumulated dissipated energy approach did not show any effect of contact surface condition. In other words, the relationship between the accumulated dissipated energy and wear volume showed a linear relationship, and it was independent of loading and contact surface conditions, as well as of the fretting regime. Further, the relationship between the wear depth and accumulated dissipated energy did not show any effect of loading and contact surface conditions, as well as of the fretting regime up to instant when the maximum wear depth was equal to the coating thickness. The views expressed in this article are those of the authors and do not reflect the official policy or position of the United State Air Force, Department of Defense, or the U.S. Government.  相似文献   

7.
D.W. Hoeppner  G.L. Goss 《Wear》1974,27(1):61-70
Fretting fatigue studies were conducted on Ti-6Al-4V and 7075-T6 aluminum specimens cycled in axial fatigue loading at a fatigue ratio (R) of +0.1. Axial fatigue loading was applied at a frequency of 30 Hz in a laboratory environment with the fretting applied to the specimen central section through a fretting pad made of the same material as the fatigue specimen. Tests were conducted at various maximum axial fatigue loads and normal pressures.The fretting damage that occurred resulted in a significant reduction in fatigue life. The reduction in fatigue strength was greater for both materials studied in the long life region. A fretting fatigue damage threshold that results from the fretting was found to exist for both materials. At all load levels a given amount of fretting damage is required before any fatigue life reduction occurs. Presumably the damage leads to the development of cracks in the fretted areas. The concept of the fretting damage threshold is related to the development of an initial crack that causes the local stress intensity to exceed the threshold value at a much smaller number of applied cycles. Thus, the concepts of fracture mechanics are related to the “initiation” of fretting damage.  相似文献   

8.
采用液压高精度材料试验机考察了平面一球面接触的AZ91D镁合金摩擦副的微动磨损行为,分析了位移幅值、法向载荷和频率等参数对摩擦因数和磨损体积的影响,考察了不同实验条件下的磨斑形貌,并探讨了其磨损机理。结果表明:AZ91D镁合金的微动区域可分为部分滑移区、混合区和滑移区3个区域,粘着磨损、疲劳磨损和磨粒磨损分别是3个区域的主要磨损机制;磨损体积随着位移幅值和法向载荷的增加而增大,但却随着频率的增大而减小。在微动部分滑移区和混合区,摩擦因数随着位移增大迅速增加;在微动滑移区,摩擦因数随法向载荷的增大而减小,而位移幅值和频率对摩擦因数的影响较小。  相似文献   

9.
聚四氟乙烯基粘结固体润滑涂层微动磨损性能研究   总被引:4,自引:0,他引:4  
在不同位移幅值与载荷条件下研究了酚醛环氧粘结聚四氟乙烯(PTFE)基固体润滑涂层的微动磨损特性,并利用扫描电子显微镜、表面轮廓仪和傅里叶表面红外仪等对涂层磨斑进行分析。结果表明,粘结PTFE基涂层具有良好的抗微动损伤性能,随循环次数的变化只存在部分滑移区和滑移区,部分滑移区的损伤轻微,滑移区的损伤强烈依赖于栽荷,其损伤与PTFE分子链在往复交变载荷作用下的疲劳断裂相关。  相似文献   

10.
11.
Elevated temperature fretting fatigue of Ti-17 with surface treatments   总被引:1,自引:0,他引:1  
Fretting fatigue of Ti-17/Ti-8-1-1 contacts at 316 °C is examined experimentally. Different surface treatments are analyzed, including coatings, lubrication, and levels of shot peening. The evolution of friction is examined for a range of surface treatment. Fretting fatigue life for baseline specimens are obtained for a range of load parameters to determine loads that yield fretting fatigue lives of approximately 100,000 cycles. This applied load level was maintained constant for the different combinations of surface treatments to investigate the influence of surface treatment on fretting fatigue life. The Cu-Ni-In and Al-Br coatings and MoS2 and Everlube lubricants are removed early in the fretting fatigue experiment; hence these surface treatments had little effect on fretting fatigue life. Shot peening increases fretting fatigue lives by about 60%. Block loading experiments show that minor cycles reduce fretting fatigue life.  相似文献   

12.
采用微动摩擦磨损试验机在干摩擦条件下对新型高速重载传动轴用25CrNi2MoV钢进行微动磨损试验,研究了不同载荷(50~200N)和频率(15~30Hz)下该钢的微动磨损性能。结果表明:在频率为20Hz条件下,当载荷由50N增至200N时,25CrNi2MoV钢的平均摩擦因数由0.766减至0.661,磨损体积由19.65×10^-3 mm^3增至75.83×10^-3 mm^3;在载荷为30N条件下,当频率由15Hz增至30Hz时,平均摩擦因数由0.790增至0.905,磨损体积由11.43×10^-3 mm^3增至23.88×10^-3 mm^3;在不同试验参数下,25CrNi2MoV钢磨损表面均出现了氧化和犁沟现象,磨损机制包含氧化磨损和磨粒磨损;在频率为20Hz条件下,载荷为50,100N时,25CrNi2MoV钢的磨损机制以黏着磨损为主,载荷为150,200N时,主要磨损机制为疲劳磨损;在载荷为30N条件下,频率为15~25Hz时,磨损机制以磨粒磨损为主,当频率增至30Hz时,磨损机制以疲劳磨损为主。  相似文献   

13.
A. Pasanen  R. Rabb 《Wear》2009,267(12):2200-2207
Tangential traction caused by friction in contacting surfaces is a major factor in fretting fatigue that increases stress levels and leads to a reduction in fatigue life. Friction in fretting contact was studied in partial, mixed and gross slip conditions on quenched and tempered steel. Measurements were made with sphere-on-plane contact geometry for polished and ground surfaces. Friction was evaluated from on-line energy ratio and, after the tests, from wear marks. A maximum friction coefficient of over 1.0 was measured at mixed slip zone with polished surfaces, whereas ground surfaces promote lower values in similar operating conditions. The friction coefficient dependence on load cycles and loading frequency is also presented and briefly discussed. The friction data and understanding thus gained is to be used for evaluation of crack initiation with the numerical fretting fatigue model.  相似文献   

14.
Hyukjae Lee 《Wear》2006,260(6):642-651
Fretting tests of shot peened Ti-6Al-4V were conducted under slip controlled mode using a dual actuator test setup which could apply an independent pad displacement at a given applied bulk stress. Fretting regime was identified based on the hysteresis loop of tangential force versus relative slip range and the evolution of tangential force. Fretting regime changed from partial slip to mixed slip and then to gross slip with increasing relative slip range, and the transition from mixed to gross slip occurred at a relative slip range of ∼50 μm regardless of the applied bulk stress magnitude for both shot peened and unpeened specimens. Fretting fatigue life initially decreased as the relative slip range increased and reached to a minimum value, and then increased with an increase of the relative slip range due to the transition in fretting regime from mixed slip to gross slip. Shot peened specimens had longer fatigue life than unpeened specimens at a given relative slip range, but the minimum fatigue life was at the same value of the relative slip range for both shot peened and unpeened specimens. The relationship between relative slip and fatigue life was also found to be independent of the applied bulk stress level. Further, tangential force was directly related to relative slip and this relationship was independent of other fretting variables.  相似文献   

15.
Fretting wear and fretting fatigue are two commonly observed material damages when two contacting bodies with a clamping load are under the oscillatory motion. In this study, fretting wear damage of Cu–Al coating on titanium alloy, Ti–6Al–4V substrate was investigated using the dissipated energy approach. Fretting tests were conducted with either no fatigue load or the maximum fatigue load of 300 MPa and stress ratio of 0.1 on the substrate (specimen). In order to investigate the effect of contact load and contact size, different pad sizes and contact loads were used in the tests. Accumulated dissipated energy versus wear volume data showed a linear relationship regardless of fatigue loading condition on specimen with the smaller pad size. However, two separate linear relationships were observed based on the fatigue loading condition with the larger pad size, such that a relatively more dissipated energy was required for a certain amount of wear with fatigue load on the specimen. The linear relationship between the accumulated dissipated energy and wear volume for both pad sizes extended from partial to gross slip regimes and was not affected by the applied contact load. Further, fretting tests with and without fatigue load resulted in different shapes of fretting loops when the larger pad size was used.  相似文献   

16.
镍基单晶高温合金蠕变-疲劳寿命评估方法进展   总被引:3,自引:0,他引:3  
论述镍基单晶合金的滑移变形机制和疲劳裂纹萌生机理,分别介绍镍基单晶合金蠕变寿命和低循环疲劳寿命分析评估模型;镍基单晶合金蠕变、疲劳寿命的研究方法可分为应用各向异性张量描述非弹性各向异性变形的宏观力学(唯象)模型和基于晶体学滑移变形理论的微观力学模型;晶体取向、平均应力、环境温度、循环频率、循环应力比是影响单晶合金蠕变-疲劳寿命的主要因素。复杂应力状态下的单晶合金多轴低循环疲劳损伤,单晶合金在疲劳-蠕变交互作用下的疲劳损伤和单晶合金的接触疲劳损伤等问题是需要研究的重要课题。  相似文献   

17.
Mixed high low fretting fatigue of Ti6Al4V: Tests and modelling   总被引:1,自引:0,他引:1  
In this paper fretting fatigue tests under a combined HCF/LCF loading regime are reported. This loading cycle is representative of operating conditions at the interface of the dovetail fixing between fan and blade in an aeroengine, although a classical geometry was considered, viz. the contact of cylinders against a ground flat tensile specimen. Both, specimen and pads were made of fan blade and disc alloy Ti6Al4V. The main objective of these experiments was to investigate the influence of such complex contact loads on the fretting damage and most importantly on fretting fatigue. A methodology to estimate total life is proposed and assessed against the experimental data. The results show that the main effect on fretting fatigue life is associated with the level of tangential force and that the predictive method was able to capture the effect of the experimental parameters on life, together with the influence of the residual stress field due to shot peening.  相似文献   

18.
Lee  H.  Mall  S. 《Tribology Letters》2004,17(3):491-499
Frictional force behavior during fretting fatigue and its interdependence on other fretting variables are investigated. Both coefficient of static friction and the normalized frictional force (i.e., the ratio of frictional force and normal contact load) increase during the earlier part of a fretting fatigue test and then both reach to a stabilized value. The variation of temperature in the contact region and normalized frictional force with increasing cycle numbers and bulk stress show similar trend implying that normalized frictional force represents the average friction in the contact region during a fretting fatigue. An increase in bulk stress, relative slip, and hardness of pad material results in an increase of the normalized frictional force, while an increase in contact load, frequency and temperature decreases the normalized frictional force. The normalized frictional force is also affected by the contact geometry. On the other hand, coefficient of static friction increases with an increase in the hardness of mating material, temperature and roughness from shot-peening treatment, but is not affected by contact geometry and displacement rate. Further, the normalized frictional force is not affected by the contact geometry, roughness and applied bulk stress level when fretting fatigue test is conducted under slip controlled mode, however it increases with increasing applied relative slip and decreasing contact load in this case.  相似文献   

19.
Fretting causes considerable reduction in the fatigue strength of a shrink-fit assembly and failures through fretting are as numerous as failures from normal fatigue. The purpose of this investigation was to determine the effect of contact pressure and slip amplitude on the fatigue limit, and a favourable value for overhang of hub and fillet radius with constant diameter ratio, at which fretting failure can be avoided and the maximum normal fatigue strength will be obtained. The torsional fatigue strength of shrink-fitted shaft couplings was estimated by tests performed by varying the overhang of the hub, the fillet radius of the shaft and the contact pressure of the shrink-fitted assembly. Press-fitting of the hub overhanging the shoulder was used to increase the contact pressure. The tests were performed using a grooved hub. These experiments showed that fretting was reduced with an increase in contact pressure, because the slip amplitude decreased. The shaft was fractured just inside the end of the fit by fretting fatigue with low contact pressure, but if the contact pressure was very high, the shaft fractured at the fillet by normal fatigue. The fretting fatigue limit at a constant diameter ratio increases with an increase in the fillet radius, and reaches its maximum value at a certain radius using the grooved hub.  相似文献   

20.
《Wear》2002,252(3-4):199-209
The present work describes research conducted on the fretting behaviour of S 355 MC galvanised steel sheet. In order to study the influence of the normal load and the displacement effect, some of the specimens were galvanised by hot dipping and the rest were only polished before being tested. Fretting tests were carried out on a specially developed fretting rig prototype under ‘crossed-cylinders’ contact geometry. Tests were done during 0.72×106 cycles in laboratory air conditions. The tangential force and the displacement were measured in order to establish the fretting cycles for each fretting condition. The fretted surfaces were analysed by means of optical and scanning electron microscopes to identify the main wear mechanisms. Three different fretting regimes were identified: the stick regime; the slip regime; and the mixed stick–slip regime, which depended mainly on the influence of the normal load and the stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号