首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim was to discover the effect of high gravity brewing on yeast protease activity during fermentation, on the loss of hydrophobic polypeptides from wort during fermentation, and on the foam stability of stored beer. The hydrophobic polypeptide content of low (10° Plato) gravity worts showed a steady decline throughout fermentation, but for the 20° Plato wort there was a rapid decline over the first 8 days of fermentation, followed by little change over the remaining period. The decrease in hydrophobic polypeptides was greater in the high gravity fermentation. Proteinase A increased during fermentations with the highest levels being present at the end of fermentations. High gravity fermentations exhibited levels of yeast protease that from the 3rd to 11th day of fermentation were at least twice the values of the low gravity fermentations. The high gravity brewed beer contained significantly higher levels of proteinase A activity than the low gravity brewed beer. The inclusion of FERMCAP™, an antifoam, in high gravity wort did not affect either the hydrophobic polypeptide levels or foam stability of the resultant beer. This suggests that proteinase A, rather than fermenter foaming, must be the major contributor to the lack of foam stability of high gravity brewed beer. Head retention measurements conducted on the high and low gravity brewed bottled beers, over a five month period, demonstrated a steady decline in foam stability for both beers. The declines in head retention did not occur in high and low gravity beers that had been pasteurised.  相似文献   

2.
The ability of beer to produce good foam is influenced by the level of foam‐active polypeptides. Specific polypeptides with hydrophobic domains, such as Lipid Transfer Protein (LTP1), are important components of beer foam. Although, high gravity brewing is a commercially viable technique, it has the disadvantage of producing beer with less foam stability compared to lower gravity brewed counterparts. It is thought that proteinase A plays a key role in the degradation of these hydrophobic polypeptides responsible the beer foam stability. The object of this study was to compare and quantify the loss of hydrophobic polypeptides and specifically foam‐LTP1 during high gravity (20°Plato) and low gravity (12°Plato) wort fermentations and to evaluate the effect of proteinase A on these polypeptides. The losses of hydrophobic polypeptides and foam‐LTP1 were generally greater in high gravity brews. Furthermore, the results obtained suggest that proteinase A alters the hydrophobicity of these polypeptides rather than their molecular size. Approximately 20% of hydrophobic polypeptides and approximately 57% of foam‐LTP1 appeared to be proteinase A resistant. These differential losses of hydrophobic polypeptide and foam‐LTP1 could have implications for the foam stability of the finished product.  相似文献   

3.
Our aim was to examine the effect of high gravity brewing on head retention with respect particularly to the effect of high gravity brewing on hydrophobic polypeptide levels. High gravity brewed beer had poorer head retention values when compared to a similarly brewed low gravity beer. Analysis of hydrophobic polypeptide levels in both high gravity wort (20° Plato) and low gravity wort (10° Plato) produced using a lauter tun, revealed that the high gravity wort contained 8% less hydrophobic polypeptide than the low gravity wort (undiluted basis). Analysis of hydrophobic polypeptides throughout the brewing process for these 10°P and 20°P brews demonstrated that the hydrophobic polypeptide content decreased, especially during the kettle boil and fermentation. Furthermore, the high gravity brewed beer suffered the greatest loss, leaving the final beer with approximately 40% less hydrophobic polypeptides than the low gravity beer. Brewing at 10°P and 20°P using a mash filter demonstrated that these filters can improve the head formation and stability of the resultant beers at sales gravity. However, the low gravity beer still produced a more stable foam (Rudin value 93 s) when compared to the high gravity beer (Rudin value 83 s). The mash filter slightly increased the hydrophobic polypeptide extraction. It is concluded that the mash filter produced higher hydrophobic polypeptide levels in the final beers, as well as having a positive effect on reducing the levels of foam negative compounds such as fatty acids in the wort, and therefore slightly improved head retention values .  相似文献   

4.
During ale fermentation there was an accumulation of total and hydrophobic polypeptides in the foam relative to the wort. Comparisons were made not only of the total and hydrophobic polypeptide contents but also of the molecular weights of these polypeptides present in wort, partially fermented wort and its concomitant foam. Wort, fermented wort and foam fractions had very similar polypeptide compositions with a major group having molecular weights of 40–43 kDa. Material of molecular weight in the range of 5–17 kDa and at 66 kDa was also detected. The polypeptides accumulated in foam displayed both hydrophobic and non‐hydrophobic character. The presence of yeast polypeptides in foam was confirmed. Comparison was also made between the fermentations of 10°Plato and 15°Plato wort. The results of the work may contribute to a better understanding of the mechanism of foam formation during beer fermentation, leading to reduced foaming and enabling an increase in the working capacities of fermenters. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
The yeast vacuole has been shown to exhibit morphological responses to environmental conditions when exposed to worts of different gravity during fermentation. Marked effects of high gravity wort (20° Plato) on yeast morphology compared to more conventional wort gravity (12° Plato) were observed. High gravity worts caused vacuolar enlargement compared to conventional gravity wort. These results suggested that yeast cells experienced severe alterations with the vacuolar tonoplast when exposed to high osmotic pressure and elevated levels of ethanol.  相似文献   

6.
Acid washing pitching yeast is an effective method for removing bacterial contamination, but if the yeast is washed incorrectly decreased fermentation performance and beer quality problems may result. Various factors can affect the acid resistance of yeast strains during brewery fermentations. Yeast from shaking flask experiments was more resistant to the combination of high gravity and acid washing conditions than yeast cropped from static fermentations. Yeast harvested from static high gravity wort (20° Plato; 1.083 OG) fermentations was more adversely affected by acid washing than yeast from standard gravity (12° Plato; 1.048 OG) wort. Wort oxygenation resulted in enhanced yeast fermentation performance and healthier yeast crops when yeast was serially repitched into 20° Plato wort. Yeast cropped from fermentations with air saturated high gravity wort responded poorly when acid washed. These results suggest that the structure of the plasma membrane particularly the sterol and fatty acid composition, may have an important role in tolerating high gravity wort and acid washing conditions.  相似文献   

7.
啤酒酵母在发酵过程中分泌胞外的蛋白酶A是影响纯生啤酒泡沫稳定性的关键因素,本研究通过采用亚硝基胍(TNG)和甲基黄酸乙酯(EMS)复合诱变选育满足食品安全性的低蛋白酶A、发酵性能正常的优良啤酒酵母菌株,为解决纯生啤酒泡沫稳定性奠定基础。  相似文献   

8.
The present work evaluated the influence of all‐malt wort original gravity on fermentative parameters and flavour‐active compound formation during primary fermentation of high gravity brewing by a continuous process using a lager yeast immobilised on a natural carrier obtained from brewer's spent grain (the main brewery by‐product). The all‐malt worts with original gravity (OG) ranging from 13.4 to 18.5°Plato were prepared by diluting a very‐high‐gravity wort (20°Plato) with sterile brewery water. The continuous assay was carried out in a bubble column bioreactor with a total working volume of 5.2 litres, at 15°C, using a constant gas flow rate of 250 mL/min (200 mL/min of CO2 and 50 mL/min of air) and a dilution rate of 0.04 h?1 (residence time of 25 h). The results indicated that as the wort OG was increased, the ethanol concentration of the outflowing beer increased. On the other hand, the continuous fermentation of the most concentrated worts (16.6 and 18.5°Plato) resulted in beers with unbalanced flavour profiles due to excessive ethyl acetate formation. The immobilised cell concentration appeared to be nearly independent from increasing wort OG.  相似文献   

9.
纯生啤酒中残存的蛋白酶A严重影响泡沫稳定性,制约了纯生啤酒的质量提升。为了探索啤酒发酵过程中影响蛋白酶A分泌的因素,作者分别考察了菌种、酵母生理状态、酵母代数、麦汁浓度、发酵时间等对蛋白酶A分泌的影响。结果发现,蛋白酶A分泌量高的菌株,处于稳定期之后的酵母、较高的酵母代数、较高的原麦汁浓度和在发酵阶段末期都会导致发酵液中蛋白酶A活性偏高。建议在实际生产中,采用蛋白酶A分泌量少的菌种、调整酵母生理状态、使用小于3代的酵母、采用18°P以下的麦汁发酵和尽早结束发酵都会对降低蛋白酶A的分泌量起到积极作用。  相似文献   

10.
The foam level during fermentations of hopped and unhopped wort and with fresh yeast and successive generations of yeast was examined. Simultaneously the total and hydrophobic polypeptide contents in worts, fermented worts and their concomitant foams were checked. It was shown that the total and hydrophobic polypeptide contents of the foam fraction and the foam level during fermentation were dependent on the generation number of yeast. The early generations of yeast (generations 1 and 2) promoted the formation of the largest amount of foam. It was also observed that a higher volume of foam occurred during fermentation of hopped wort in respect to unhopped one despite a higher concentration of polypeptides in unhopped wort. It could be a consequence of a higher foaming potential of polypeptides in hopped wort. The findings of the work may result in the limitation of foaming in the fermenters and consequently the increase of the brewery productivity without using additives and compromising the quality of the final product.  相似文献   

11.
Proteinase A, excreted from yeast cells into beer during fermentation in the brewing process, has been shown to degrade foam-active proteins and to decrease foam stability. In order to improve the measurement of this enzyme in beer, a new fluorescent peptide, MOCAc-Ala-Pro-Ala-Lys-Phe-Phe-Arg-Leu-Lys (Dnp)-NH2, was synthesised and applied to the accurate and rapid estimation of proteinase A in commercial beer and fermenting wort. This novel substrate is several hundred times more sensitive to proteinase A than other previously reported synthetic substrates or native protein substrates. The concentration of proteinase A in beer is closely related to foam stability and proteinase A activity was found to increase gradually during fermentation. The concentration of proteinase A excreted from yeast cells is also closely related to the vitality of pitching yeast cells. This new method was successfully applied to the evaluation of yeast vitality and the development of optimum yeast handling procedures.  相似文献   

12.
The impact of the initial dissolved oxygen, fermentation temperature, wort concentration and yeast pitching rate on the major fermentation process responses were evaluated by full factorial design and statistical analysis by JMP 5.01 (SAS software) software. Fermentation trials were carried out in 2L‐EBC tall tubes using an industrial lager brewing yeast strain. The yeast viability, ethanol production, apparent extract and real degree of fermentation were monitored. The results obtained demonstrate that very high gravity worts at 22°P can be fermented in the same period of time as a 15°P wort, by raising the temperature to 18°C, the oxygen level to about 22 ppm, and increasing the pitching rate to 22 × 106 cell/mL. When diluting to obtain an 11.5°P beer extract, the volumetric brewing capacity increased 91% for the 22°P wort fermentation and 30% using the 15°P wort. After dilution, the fermentation of the 22°P wort resulted in a beer with higher esters levels, primarily the compound ethyl acetate.  相似文献   

13.
Intensification of the industrial brewing process, particularly the use of higher gravity worts, has been driven by increasing competition within the industry as well as the need to maximise the use of raw materials and minimise energy expenditure. These developments have, however, placed greater demands on brewing yeast strains, whose evolutionary history has not prepared them for the extreme conditions associated with higher gravity brewing. Various yeast nutrient supplements have been used or proposed to maintain yeast performance under stressful conditions. These have included specific metal ions, lipids and lipid components such as fatty acids and sterols and free amino nitrogen, usually supplied in the form of a complex yeast food. Correction of wort nutritional deficiencies may reduce stress sensitivity of yeast and improve fermentation performance. Potential negative consequences of altering wort composition must however be considered, as important beer quality attributes such as taste, stability and foam can be affected. Here, the various options for nutrient supplementation and their influence on yeast physiology and performance, as well as beer characteristics are considered.  相似文献   

14.
The aim was to establish if a substantial increase in hydrophobic polypeptides could be achieved during high gravity mashing. When worts with gravities ranging from 5–20°P were analysed for hydrophobic polypeptide content it was found that there was no appreciable increase in hydrophobic polypeptide levels. Remashing of the spent grains from low and high gravity mashes demonstrated that this resulted from inefficient extraction of hydrophobic polypeptide levels during the mashing process. For example, wort produced from remashed high gravity spent grains contained 150 mg/L hydrophobic polypeptides compared to only 10 mg/L in the low gravity remashed spent grains. Experiments were conducted, employing standard mashing techniques, in an attempt to increase the extraction of hydrophobic polypeptides during high gravity mashing. Thus the use of gypsum, proteolytic stands, varying liquor to grist ratios and wheat malt addition were all investigated for their effect on hydrophobic polypeptide extraction during high and low gravity mashing. Wort analysis demonstrated that none of the techniques employed had a significant effect on hydrophobic polypeptide extraction. When wort from remashed spent grains was used as mashing in liquor for a fresh mash and the resultant worts analysed for hydrophobic polypeptides it was observed that no increase in hydrophobic polypeptide extraction was achieved. For example, wort from the remashed high gravity spent grains, containing 140 mg/L hydrophobic polypeptides, when used as mashing-in liquor, produced no increase in hydrophobic polypeptide levels in the resultant high gravity wort (230 mg/L) when compared to a high gravity wort produced using distilled water as mashing-in liquor (255 mg/L). It is therefore concluded that a saturation point has been reached and no more hydrophobic polypeptides can be extracted during mashing regardless of the procedures employed.  相似文献   

15.
The changes in the proton efflux rate (PER) during fermentation of normal gravity (NG), high gravity (HG) and very high gravity (VHG) wort by a lager yeast (Saccharomyces pastorianus) were monitored using an optimized PER test method. The values of the proton efflux rate in S. pastorianus decreased with increasing initial wort gravity. Moreover, the difference in the proton efflux rate values at the beginning of the fermentation was lower than at the end of fermentation from normal gravity to very high gravity brewing. These results demonstrated that the proton efflux rate in S. pastorianus was inhibited in the later stages of high gravity and very high gravity brewing. Furthermore, the changes of the proton efflux rate in S. pastorianus under the high ethanol concentration conditions appeared to depend on the concentration of ethanol in the fermentation liquid. A better negative correlation (P > 0.001, r = ?0.95) between the ethanol concentration at >4% (w/v) and the proton efflux rate was found. The changes of the proton efflux rate in the cells treated with exogenous ethanol confirmed that higher concentrations of ethanol could significantly inhibit proton efflux in S. pastorianus. This study offers a possible way to monitor and explain the performance of yeast in the complex environment of high gravity and very high gravity brewing.  相似文献   

16.
为降低高浓啤酒发酵中高级醇的生成量,研究18°Bx麦汁啤酒酿造过程中的加糖浆方式、酵母接种量和麦汁中α-氨基氮含量对啤酒高级醇生成量的影响。结果表明:18°Bx麦汁发酵高级醇生成量显著高于12°Bx麦汁;分两次加入制备18°Bx麦汁所需的糖浆量、控制18°Bx麦汁的酵母细胞接种量为3×107个/mL以及麦汁中α-氨基氮含量为230mg/L麦汁时,均有利于降低18°Bx高浓啤酒发酵过程中高级醇的生成量。  相似文献   

17.
该文研究蛋白酶A活力对纯生啤酒泡持性的影响,同时建立初始成品纯生啤酒及过滤前发酵液蛋白酶A活力限量值。结果表明,随着贮存时间的延长,纯生啤酒蛋白酶A活力和泡持值均呈下降趋势,最终残留蛋白酶A活力是影响其货架期泡持值的主要因素。纯生啤酒泡持值与蛋白酶A活力呈显著负相关(P<0.01)。为了保证成品纯生啤酒在货架期内泡沫稳定性,发酵液出罐滤酒前的蛋白酶A活力应<24×10-5 U/mL,相应成品纯生啤酒初始蛋白酶A活力应<15×10-5 U/mL。该内控标准能为纯生啤酒生产企业控制泡持性提供指导。  相似文献   

18.
以啤酒酵母S-6为实验菌株,研究了主发酵温度和原麦汁浓度对啤酒发酵的残糖、酒精度、风味物质和絮凝性等性能指标的影响。结果表明,原麦汁浓度一定时,主发酵温度对高级醇和乙酸酯的含量影响较大,主发酵温度由10 ℃提高至16 ℃时,高级醇含量提高了10%~20%,乙酸酯含量提高了8%~16%,但CO2累积质量损失、残糖、酒精度和絮凝性基本不受温度的影响;主发酵温度一定时,原麦汁浓度对酵母絮凝性影响较大,原麦汁浓度越高,酵母絮凝性越低,将高浓(18 °Bx)发酵液稀释50%至常浓(12 °Bx),残糖、酒精度和高级醇的含量与常浓发酵液基本相同。该研究为选育高温高浓发酵低产高级醇同时强絮凝性酵母菌株提供了重要依据。  相似文献   

19.
高浓酿造技术研究进展   总被引:3,自引:0,他引:3  
高浓酿造技术的主要优点通过有效降低糖化的用水,仅利用现有糖化、发酵和储存设备即可大幅度提高啤酒产量,缺点包括:降低糖化锅原料及煮锅酒花利用率,泡沫稳定性下降,酸洗效应,降低酵母存活率,酵母回用代数下降以及需要及时调整麦汁中二阶离子的浓度。  相似文献   

20.
Increasing the quantity of beer production without diminishing the quality of the product is a key concern of the beer producing industry. Modifications to the brewery's equipment and settings are the most commonly used methods to improve the brewing process, while the supreme importance of the physiological state of the beer producing organisms, the yeast cells, for the productivity of the brewing process is often poorly recognised. The work described here was designed to optimise two processes: the inoculation regime used to produce high gravity bottom-fermenting beer, and the production of high quality diet beer. To achieve these aims, flow cytometry was used to follow changes in the distribution of DNA, neutral lipid and 3β-hydroxsterol contents in Saccharomyces carlsbergensis strains during inoculation, fermentation and storage. This allowed potential time-saving alterations in the process to be identified. Double staining techniques proved that vigorous fermentative activity and long-term survival capacity during main and secondary fermentation requires intense multiplication of the yeast cells during inoculation. The production of high gravity beer was then enhanced by altering the schedule of the wort additions, and thus increasing the yeast's activities related to multiplication. To produce diet beer, oligosaccharides that remain after the standard brewing process are degraded by adding small amounts of wort, usually during secondary fermentation. However, during this period of fermentation the physiological activity of the yeast cells is hampered by low carbon and high ethanol concentrations. Adding small batches of wort at carefully defined time points and in optimised amounts, even during the main fermentation, improves the physiological state of the yeast cells and rapidly decreases the carbon concentration within the fermentation tank. Both of these factors help to promote quick fermentation to a high quality diet beer. Thus, the flow cytometric investigations provided a reliable basis for identifying effective means of improving the process regime for brewing both of these products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号