首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
为了提高某低品位菱铁矿的铁品位,采用了煤基直接还原-磁选工艺,对菱铁矿块矿进行了焙烧条件试验。结果表明:在焙烧温度1050℃,焙烧时间100 min,菱铁矿粒度10~16 mm,煤的粒度0~5 mm,煤矿质量比1.5:1的条件下进行还原焙烧,可得到金属化率93.13%的焙烧矿;该焙烧矿在磨矿粒度为-0.074 mm 80%以上,磁场强度为0.1 T,磁选时间为15 min的条件下进行磁选试验后可得到精矿铁品位为91.11%,铁回收率为97.15%的铁粉。且-25 mm的菱铁矿块矿全粒级直接还原效果良好,焙烧矿的金属化率可达到92.6%以上,磁选后的精矿铁品位高达89.4%,回收率在93.5%。  相似文献   

2.
某低品位难选菱铁矿分级磁化焙烧试验研究   总被引:5,自引:5,他引:0  
针对回转窑磁化焙烧过程中细粒级粉矿存在的容易“结圈”以致焙烧作业率偏低的问题,对某低品位难选菱铁矿进行了分级闪速磁化焙烧试验研究。结果表明,将原矿TFe品位24.68%的菱铁矿筛分成块矿与粉矿两种产品,采用块矿回转窑焙烧、粉矿闪速焙烧的联合焙烧工艺,可获得磁选精矿产率33.66%、TFe品位60.91%、铁回收率83.07%的选矿指标。  相似文献   

3.
针对酒钢镜铁山粉矿强磁选工艺存在的精矿铁回收率和品位均较低的问题,东北大学在对强磁预富集精矿进行工艺矿物学分析的基础上,进行了悬浮磁化焙烧扩大试验研究。结果表明:酒钢粉矿强磁预富集精矿TFe品位为39.02%,预富集精矿含铁矿物主要为赤铁矿和菱铁矿,铁分布率分别为67.81%、28.36%,脉石矿物主要为石英、白云石和重晶石;粉矿采用强磁选抛尾-悬浮焙烧-磁选-反浮选新工艺,最终获得了TFe品位60.67%、SiO2含量4.52%的合格铁精矿,铁回收率为76.27%。与原单一强磁选工艺相比,新工艺的精矿铁品位提高了16.11个百分点,SiO2含量降低了6.83个百分点,铁回收率提高了14.43个百分点,精矿指标有了较大幅度的提高,为下一步粉矿资源的高效利用提供了技术依据。  相似文献   

4.
东鞍山烧结厂含菱铁矿浮选中矿经700 ℃还原焙烧-磁选工艺处理,可以得到品位为60.43%,回收率为83.59%的铁精矿。利用X射线衍射分析和扫描电镜分析手段着重对焙烧过程中铁矿物的转化机制进行了研究,结果表明,随着焙烧温度的改变,焙烧过程将经历菱铁矿分解、赤铁矿还原和铁矿物过反应3个阶段,其中赤铁矿还原阶段对应的焙烧温度正是700 ℃,此时焙烧产品中的铁矿物以磁铁矿为主,最有利于弱磁选。  相似文献   

5.
为有效利用贵州观音山地区的菱铁矿资源,对该矿石进行了重选、强磁选及磁化焙烧-弱磁选试验。结果表明:重选和强磁选都难以获得品位合格的铁精矿;在焙烧温度为850 ℃、焙烧时间为60 min、还原剂用量为4%、最终磨矿细度为-325目占80%、磁感应强度为150 mT的条件下,观音山菱铁矿经过磁化焙烧和两段磨矿、两段弱磁选,可以获得铁品位为64.41%、S和P含量分别为0.19%和0.024%、铁回收率为87.41%铁精矿。  相似文献   

6.
大西沟菱铁矿闪速磁化焙烧-磁选探索试验   总被引:8,自引:5,他引:3  
采用自主研发的闪速磁化焙烧中试装置,对铁品位为21.21%的大西沟铁矿菱铁矿-1 mm粉矿进行闪速磁化焙烧-弱磁选探索性试验,获得了铁精矿产率为38%~40%,铁品位>56%,金属回收率>80%的良好试验指标,为难选弱磁性铁矿石的高效利用开辟了新的工艺路线。  相似文献   

7.
酒钢选厂强磁选工艺产生的铁尾矿品位较高,约为21.50%。尾矿大量堆存不仅占用土地、污染环境,还浪费了大量铁资源。为了研究利用悬浮磁化焙烧技术处理该类尾矿的可行性,缓解酒钢原料不足的矛 盾,对该尾矿进行了预富集—悬浮磁化焙烧—磁选—反浮选扩大试验研究。试验结果表明:①酒钢尾矿经一段弱磁—两段强磁预富集工艺分选,获得了铁品位26.01%、回收率82.71%的预富集精矿,预富集精矿中含铁 矿物主要为赤铁矿、磁铁矿和菱铁矿,脉石矿物主要为石英、白云石和重晶石。②预富集精矿在还原温度530 ℃、CO流量2.0 m3/h、N2流量3.0 m3/h、处理量99 kg/h的适宜悬浮焙烧工艺参数下,稳定试验连续运行了 48 h,取得了磁选管磁选铁精矿平均铁品位51.41%、铁回收率72.39%的技术指标。③酒钢总尾矿采用预富集—悬浮焙烧—磁选—反浮选全流程处理,最终可获得铁品位58.67%、铁回收率57.82%、SiO2含量6.48%的铁精 矿,综合尾矿铁品位12.00%,指标良好。该试验结果为酒钢下一步对该类尾矿资源的回收利用提供了技术依据。  相似文献   

8.
某强磁预选精矿TFe品位为39.09%,主要含铁矿物为赤褐铁矿和菱铁矿,分布率分别为80.97%和17.14%。为充分提高该矿石的利用率,对其采用悬浮焙烧-磁选工艺进行研究。试验结果表明:在给矿细度为-74μm 64.43%、总气体流量10 m~3/h、氢气浓度30%、焙烧温度650℃、焙烧时间18 s的条件下进行悬浮焙烧,焙烧产品经弱磁选可获得精矿TFe品位55.64%、回收率92.55%的指标。对焙烧产品进行XRD分析表明悬浮焙烧过程已将大部分弱磁性铁矿物转变为磁铁矿。悬浮焙烧技术具有产品质量均匀、焙烧时间短、传热效率高等优点,为我国复杂难选铁矿石的高效利用开辟了新的途径。  相似文献   

9.
大西沟菱铁矿煤基回转窑磁化焙烧半工业试验   总被引:6,自引:2,他引:4  
用Φ1.3 m×24 m煤基回转窑对大西沟菱铁矿(品位TFe 26.82%)进行了中性磁化焙烧半工业试验。控制合适的焙烧温度场和气氛场, 焙烧矿排入水中淬冷。水冷焙烧矿磨矿至95.60% -0.045 mm, 经磁场强度1.19×102 kA/m的磁选管选别得磁精矿的产率44.52%, 品位TFe 59.84%, 回收率86.41%的理想指标, 为我国菱铁矿的开发利用开辟了新的有效途径。  相似文献   

10.
新疆某菱铁矿磁化焙烧-磁选试验   总被引:1,自引:0,他引:1  
朱德庆  何威  潘建  薛子兴 《金属矿山》2012,41(5):79-81,103
以新疆某地菱铁矿为原料,详细研究了焙烧温度、焙烧时间、还原剂用量、菱铁矿粒度、焙烧产物磨矿细度和弱磁选磁场强度等因素对磁选效果的影响。结果表明:16~10 mm的菱铁矿在不加还原煤、焙烧温度为800 ℃、焙烧时间为15 min条件下的焙烧产物磨至-0.074 mm占90%,经1次弱磁选(151.20 kA/m),可获得铁品位为63.55%、回收率为95.76%的铁精矿。  相似文献   

11.
对大西沟铁矿进行了表面磁化焙烧-强磁选预富集新工艺探索。结果表明,采用表面磁化焙烧-强磁选预富集技术,在尾矿铁损失率仅10.30%的情况下,可以将菱褐铁矿品位从23.93%提高至33.89%,抛出产率36.68%、品位仅6.72%的尾矿。表面磁化焙烧-强磁选一粗两精流程可获得强磁精矿品位42.15%、回收率69.39%,总尾矿品位仅11.44%。研究成果可为菱褐铁矿合理经济利用提供新的方案。  相似文献   

12.
高磷鲕状赤铁矿动态磁化焙烧-磁选试验研究   总被引:3,自引:3,他引:0  
对鄂西高磷鲕状赤铁矿进行了动态磁化焙烧-磁选试验研究。针对两种不同粒度的原矿, 确定了动态气-煤混用磁化焙烧的工艺条件: 焙烧温度800 ℃, 混配煤粉5%, 煤气流量0.9 L/min, 转炉倾角1.8°, 转炉转速0.6 r/min(焙烧时间50 min)。矿石中赤铁矿可有效转变为磁铁矿, 焙烧过程中无粘结现象。焙烧产品采用阶段磨矿-阶段磁选流程, 原料粒度0~2 mm时, 精矿铁品位58.95%, 铁回收率87.26%; 原料粒度0~6 mm时, 精矿铁品位58.69%, 铁回收率89.50%。  相似文献   

13.
针对铁品位32.79%、磁性率(FeO/TFe)5.49%的固阳难选褐铁矿, 进行了回转窑磁化焙烧-磁选扩大实验。采用SEM和XRD对原矿物性结构及成分以及磁化焙烧过程中的物相演变进行了分析。通过单因素实验和正交实验确定了最佳工艺指标以及不同因素对实验结果的影响程度。结果表明, 原矿在焙烧温度750 ℃、配煤量7%、焙烧时间40 min条件下焙烧, 所得焙烧矿通过阶段磨矿、阶段磁选可获得铁品位61.62%、铁回收率82.54%的铁精矿。  相似文献   

14.
张茂 《矿冶工程》2021,41(1):98-100
采用锌挥发焙烧-磁选回收铁工艺流程回收利用高锌含铁尘泥, 研究了焙烧、磁选工艺参数对回收效果的影响。结果表明, 含铁尘泥在焙烧温度1 200 ℃、焙烧时间90 min、还原剂用量15%条件下还原焙烧, 锌挥发率达97.10%; 焙烧渣经一粗一精弱磁选, 可获得铁品位61.42%、铁回收率86.98%的铁精矿。该工艺流程可为高锌含铁尘泥的规模化工程利用提供技术支撑。  相似文献   

15.
针对难选弱磁性菱铁矿、褐铁矿采用常规选矿方法不能有效分选的难题,进行了基础理论研究、成套技术与装置研发以及系统工程技术集成等,开发了高效处理难选弱磁性铁矿石的闪速磁化焙烧成套技术与装备,并在湖北黄梅建成了首个60万吨/年的产业化工程项目并稳定生产。原矿品位32.52%的菱(褐)铁混合矿,经闪速磁化焙烧处理后,工业生产可获得铁精矿品位57.52%、SiO2含量4.76%、铁回收率90.24%的先进技术指标;原矿焙烧热耗31.22 kgce/t,产品铁精矿制造成本234.36元/吨,低于其它焙烧方法。该技术的推广应用前景十分广阔。  相似文献   

16.
胡芳  陈泽宗 《矿冶工程》2021,41(6):81-83
对铁品位42.36%的某微细粒难选铁矿尾矿进行了选矿工艺研究,制定了磁化焙烧-弱磁选的选矿工艺流程,并研究了配煤量、焙烧温度、焙烧时间和磨矿细度等试验条件对铁回收效果的影响。结果表明,在配煤量5%、焙烧温度800 ℃、焙烧时间30 min的适宜试验条件下焙烧,所得焙烧矿磨至-0.074 mm粒级占75.83%后,经一粗一精弱磁选(磁场强度均为96 kA/m),可获得铁品位56.84%、回收率73.74%的铁精矿。  相似文献   

17.
对某矿山代表性矿样进行了矿石性质及选矿工艺试验研究, 进行了单一磁选、焙烧-磁选、磁选-反浮选、焙烧-磁选-反浮选等方案对比。结果表明, 焙烧-磁选-反浮选能获得合格铁精矿, 在最终磨矿细度-0.037 mm粒级占75%时, 对品位32.50%的原矿经过三段磁选、三段浮选, 可获得精矿铁品位59.94%、铁回收率72.84%、尾矿品位16.13%的选别指标, 精矿中主要杂质SiO2含量8.47%。  相似文献   

18.
梅山强磁选尾矿强磁再选—分步浮选试验研究   总被引:4,自引:1,他引:3  
杨龙  韩跃新  袁志涛 《金属矿山》2010,39(4):183-186
梅山铁矿石中弱磁性铁矿物含量很高,主要为赤铁矿和菱铁矿,造成强磁选尾矿的铁品位高,有较多的的赤铁矿和菱铁矿没有被回收。对该尾矿先采用较高的磁场强度进行强磁再选,然后再对强磁再选精矿通过分步浮选进行菱铁矿与其他矿物的分离及赤(褐)铁矿与脉石矿物的分离。试验获得的最终精矿铁品位为42.75%,高于目前生产过程中强磁扫选的精矿品位,略低于强磁粗选的精矿品位,可以提高梅山铁矿选矿厂铁回收率5个百分点以上。  相似文献   

19.
强磁选和重选联合回收尾矿和冶炼尾渣中铁的研究   总被引:3,自引:1,他引:2  
陈志友  陈秋虎 《金属矿山》2009,39(9):182-184
采用SLon立环脉动高梯度强磁选机和离心选矿机重选联合工艺,可以有效回收选矿尾矿、赤泥、浸金尾渣和焙烧中矿的铁资源。研究表明,首先采用SLon立环脉动高梯度强磁选机在背景场强0.7~0.9 T下粗选抛尾,抛除大量的脉石矿物,使铁矿物得到富集;再对强磁选粗选精矿采用离心选矿机在转速为400 r/min,洗涤水为2 400~2 600 mL/min进行精选,可以得到Fe品位60%以上的铁精矿,并且有较高的精矿回收率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号