首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 18 毫秒
1.
采用水合肼对氧化石墨烯进行还原,获得2种含氧量不同的还原石墨烯(rGO),与双马来酰亚胺(BMI)树脂溶液混合并通过湿法预浸工艺制备碳纤维(CF)预浸料,采用热压成型工艺制备rGO-CF/BMI复合材料单向板。研究了rGO的还原程度及含量对复合材料力学性能、玻璃化转变温度及电磁性能的影响。结果表明:在较高温度下制得的rGO2比在较低温度下制得的rGO1具有更高的还原程度,rGO2在树脂中的分散性相对较差。当rGO1与rGO2的质量分数分别为0.1%和0.05%时,rGO1-CF/BMI复合材料和rGO2-CF/BMI复合材料的层间剪切强度分别达到最高,相对于CF/BMI复合材料均提高约14%,而弯曲性能和玻璃化转变温度基本不变。rGO2-CF/BMI复合材料的介电性能优于rGO1-CF/BMI复合材料,当rGO2的质量分数为0.1%时,在12.4~18.0GHz的频率范围内,rGO2-CF/BMI复合材料的介电常数实部较CF/BMI复合材料最高提高约6倍,介电损耗最高提高约3倍。在该频率范围内,rGO1-CF/BMI和rGO2-CF/BMI复合材料均呈弱磁性,对入射电磁波的作用为高反射、低吸收。   相似文献   

2.
p型填充方钴矿材料的力学性能相对于n型较差, 成为方钴矿热电器件集成设计的薄弱环节。本工作利用氧化石墨烯(GO)良好的润湿性和亲水性, 通过液相分散实现了GO对Ce0.85Fe3CoSb12基体颗粒的网状包覆与均匀分散。利用放电等离子烧结技术同时实现了致密化和对GO的原位还原, 获得了2~5 nm厚还原氧化石墨烯(rGO)三维网状包覆的Ce0.85Fe3CoSb12基纳米复合材料。该三维网状结构利用桥接作用增加了裂纹扩展额外功, 实现了对基体材料的增强增韧。当rGO含量为2.8vol%时, Ce0.85Fe3CoSb12/rGO复合材料的抗弯强度和断裂韧性相对于纯基体材料分别提高40%和33%。但进一步提高rGO含量会增加基体晶界处的rGO厚度, 进而弱化其增强增韧效果。  相似文献   

3.
研究以聚苯乙烯(PS)微球为模板、氧化石墨烯(GO)和钛酸四丁酯(TBT)为原料, 采用溶胶-凝胶法, 利用GO与PS上的官能团和TiO2前驱体的多重配位反应, 制备了3D多级孔rGO/TiO2(PS)复合材料。通过不同手段对样品的结构和形貌进行表征, 研究了PS添加量对rGO/TiO2复合材料晶体结构、微观形貌及光催化性能的影响。分别在模拟紫外光和可见光下, 以盐酸四环素(TTCH)为目标污染物对不同PS加入量制备的3D多级孔rGO/TiO2(PS)复合材料的光催化性能进行评价, 并在模拟可见光下, 对3D多级孔rGO/TiO2(5wt%PS)复合材料进行了多次循环回收测试。结果表明: rGO/TiO2(PS)复合材料具有3D多级孔块体结构, GO作为基体的增强相通过Ti-O-C键保持多级孔刚性骨架结构的稳定。引入PS增大了rGO/TiO2(PS)复合材料的比表面积, 3D多级孔rGO/TiO2(7wt% PS)复合材料对TTCH吸附效率最高, 而3D多级孔rGO/TiO2(5wt%PS)复合材料光催化活性和稳定性最高, 且经过4次循环回收测试, 其光催化效率仍达81.02%; 模板剂PS的最佳引入量为5wt%。  相似文献   

4.
采用乳液聚合法制备苯乙烯-丙烯酸丁酯共聚物(SBA),通过熔融共混法制备了还原氧化石墨烯/SBA-聚甲基丙烯酸甲酯(rGO-SBA/PMMA)复合材料,采用FTIR、TGA、动态力学分析对复合材料进行了结构表征,并对其进行了介电性能测试。结果显示,rGO的加入能够提高SBA的玻璃化转变温度。同时,也可以提高rGO-SBA复合材料的热稳定性。rGO的加入显著提高了rGO-SBA复合材料的介电常数。在rGO-SBA复合材料中,其渗流阈值在1.17wt%~2wt%之间,当rGO含量为1.17wt%时,rGO-SBA复合材料具有高的介电特性。在rGO-SBA/PMMA复合材料中,当SBA含量为13wt%及rGO含量为0.52wt%时,在频率为1 000 Hz处其介电常数可达到8.79,且介电损耗低至0.37,进一步表明了rGO-SBA/PMMA复合材料具有高介电低损耗的特性。   相似文献   

5.
碳化硅(SiC)陶瓷具有优异的力学性能, 但是其断裂韧性相对较低。石墨烯的引入有望解决碳化硅陶瓷的断裂韧性较低的问题。本研究采用热压烧结工艺, 制备了具有不同还原-氧化石墨烯(rGO)掺入量的SiC复合材料。经过2050℃保温、40 MPa保压1 h后, 所制备的复合材料均烧结致密。对复合材料中rGO的掺入量、微观结构和力学性能的相互关系进行分析和讨论。加入4wt%的rGO后, 复合材料的三点抗弯强度达到564 MPa, 比热压SiC陶瓷提高了6%; 断裂韧性达到4.02 MPa•m1/2, 比热压SiC陶瓷提高了54%。加入6wt%的rGO后, 复合材料的三点抗弯强度达到420 MPa, 略低于热压SiC陶瓷, 但其断裂韧性达到4.56 MPa•m1/2, 比热压SiC陶瓷提高了75%。裂纹扩展微观结果显示, 主要增韧机理有裂纹偏转、裂纹桥连和rGO片的拔出。  相似文献   

6.
采用溶剂热法制备了还原氧化石墨烯/氢氧化钴[rGO/Co(OH)_2]复合材料,通过X射线衍射、扫描电镜、拉曼光谱、热失重分析和氮气吸脱附表征了材料的形貌、结构和组成,并采用循环伏安法和恒电流充放电测试了复合材料的电化学性能。结果表明:球状的Co(OH)_2颗粒均匀分散在rGO表面形成了介孔占优的复合材料rGO/Co(OH)_2;由于Co(OH)_2和rGO的协同作用,复合材料表现出良好的电化学性能,在电流密度为1A/g时,比电容为631F/g,循环1000次后电容的保持率仍为83%。  相似文献   

7.
以氧化石墨烯(GO)和硝酸银为原材料,聚乙烯吡咯烷酮(PVP)为还原剂和稳定剂,通过水热法制备出还原氧化石墨烯/银纳米颗粒(rGO/AgNPs)复合材料。采用透射电子显微镜(TEM)、X射线衍射(XRD)及紫外-可见分光光度计(UV-Vis)对rGO/AgNPs复合材料的形貌、组成和结构进行表征。同时,将rGO/AgNPs复合材料修饰到玻碳电极表面制备出过氧化氢(H_2O_2)电化学传感器,通过循环伏安法(CV)和计时安培响应法(i-t)对传感器进行电化学性能测试。实验结果表明:制备的rGO/AgNPs传感器具有较好的电化学性能,其对H_2O_2检测的灵敏度为340.6μA·(mmol/L)~(-1)·cm~(-2),响应时间为3s,最低检测极限为7.5μmol/L(S/N=3),线性检测范围为20~4950μmol/L(线性相关系数为R=0.9973)。  相似文献   

8.
依次利用溶剂热法和原位沉积法制备了Ag@AgCl-Fe3O4/还原氧化石墨烯(rGO)复合材料,并对其进行结构和形貌表征。分别以罗丹明B(RhB)和Cd2+为研究对象,探讨了Ag@AgCl-Fe3O4/rGO复合材料吸附和可见光光催化印染废水中重金属离子和芳香族染料的性能,考察了Ag@AgCl-Fe3O4/rGO复合材料中rGO含量、与RhB共存的亚甲基蓝(MB)和Cd2+对RhB降解效果的影响;同时研究了溶液的初始pH值及与Cd2+共存的MB对Cd2+吸附效果的影响。结果表明:Ag@AgCl-Fe3O4/rGO复合材料对RhB的吸附量为47%,可见光照50 min的光催化降解率可达98%;Ag@AgCl-Fe3O4/rGO复合材料的吸附-光催化降解活性随rGO含量的增加而提高;废水中与RhB共存的MB使Ag@AgCl-Fe3O4/rGO复合材料对RhB的降解效率和循环性能受到一定抑制,而与RhB共存的Cd2+对RhB的降解效率和循环性能几乎没有影响。Ag@AgCl-Fe3O4/rGO复合材料对Cd2+也有良好的吸附性能,具有一定的pH值依赖性,在pH值为5时,复合材料对Cd2+的吸附量可达68 mg/g,但废水中MB染料的存在会抑制复合材料对Cd2+的吸附。   相似文献   

9.
以Ba~(2+)、Fe~(3+)、Zn~(2+)和氧化石墨烯(GO)为原料,采用一步溶剂热法制备了Ba~(2+)掺杂的锌铁氧体/还原氧化石墨烯(Ba~(2+)-ZF/rGO)磁性吸附剂材料。在反应过程中,实现了Ba~(2+)掺杂锌铁氧体(Ba~(2+)-ZF)的合成、GO的还原以及两相的复合等过程的同步进行,一步合成了Ba~(2+)-ZF/rGO复合材料。实验结果表明,无机粒子均匀地分散在还原氧化石墨烯(r GO)基底上,且无团聚现象。Ba~(2+)-ZF/rGO复合材料对染料分子具有优异的吸附性能,且吸附过程符合准二级动力学模型。特别地,Ba~(2+)、Fe~(2+)(来源于Fe~(3+)的还原)的引入极大地改善了复合材料的磁性能,显示出了良好的磁分离性。因此,本实验合成的Ba~(2+)-ZF/rGO复合材料是一种高效且具有良好磁分离性的吸附剂材料。  相似文献   

10.
采用一锅法制备具有可见光活性的还原氧化石墨烯(rGO)/ZnO纳米复合材料,将其应用于光催化降解罗丹明B(RhB),并获得了优异的降解效果。结果表明:该复合材料具有六方纤锌矿结构,rGO均匀包覆在ZnO上,表面光滑呈现出颗粒及不规则片状。rGO/ZnO对RhB的降解率为97.8%,催化活性优于单独的ZnO。自由基捕获实验表明,光催化降解RhB的活性物种主要是·OH-和·O-2,并由此推测了光催化降解机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号