首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
通过乙醇定向驯化获得1株可耐受乙醇体积分数为20%的黄酒酿酒酵母Et 20。研究了不同浓度的脂肪酸、氨基酸、无机盐离子、海藻糖和肌醇对Et 20乙醇耐受性及发酵性能的影响。几种添加物都能不同程度地提高Et 20的乙醇耐受性及发酵性能。不同添加物对提高Et 20的乙醇耐受性效果如下:脂肪酸氨基酸无机盐海藻糖肌醇;对发酵性能的促进作用则是:海藻糖脂肪酸氨基酸无机盐肌醇。10%乙醇胁迫下,添加海藻糖可提高39.04%的发酵强度,对提高菌株的乙醇耐受性则不突出,仅可提高15.81%的菌株生物量;促进发酵效果仅次于海藻糖的硬脂酸不仅可提高26.13%的发酵强度,还可提高40%的菌株生物量。  相似文献   

2.
利用常压室温等离子体(ARTP)诱变方法对实验室保藏的酿酒酵母(Saccharomyces cerevisiae)SC-62进行诱变,通过试验确定最佳诱变条件为处理时长80 s,此条件下菌株SC-62致死率84%。将诱变获得的菌株进行初筛、复筛和发酵性能测定。结果显示,筛选出一株耐酸性强、发酵性能优良的正突变菌株A-107,其在pH为2.5的发酵培养基上培养6 d后测得的发酵力[6.21 g CO2/(100 mL·24 h)]和酒精产量(11.52%vol)较出发菌株SC-62分别提高了37%和30%,突变菌株A-107可耐受16%乙醇、100 g/L NaCl、500 g/L葡萄糖,耐受性和遗传稳定性良好。  相似文献   

3.
利用常压室温等离子体(ARTP)诱变方法对实验室保藏的酿酒酵母(Saccharomyces cerevisiae)SC-62进行诱变,通过试验确定最佳诱变条件为处理时长80 s,此条件下菌株SC-62致死率84%。将诱变获得的菌株进行初筛、复筛和发酵性能测定。结果显示,筛选出一株耐酸性强、发酵性能优良的正突变菌株A-107,其在pH为2.5的发酵培养基上培养6 d后测得的发酵力[6.21 g CO2/(100 mL·24 h)]和酒精产量(11.52%vol)较出发菌株SC-62分别提高了37%和30%,突变菌株A-107可耐受16%乙醇、100 g/L NaCl、500 g/L葡萄糖,耐受性和遗传稳定性良好。  相似文献   

4.
为了提高酵母菌利用木糖发酵产乙醇的能力,将分离得到的野生菌株异常威克汉姆酵母A42通过常温常压等离子体(ARTP)技术进行诱变处理,从中选育具有优良性能的高产乙醇突变菌株。结果表明:诱变处理时间120 s为最佳诱变条件,在该条件下对A42进行诱变,此时致死率达到97.53%。对该条件下ARTP诱变后的菌株进行两轮的筛选得到突变菌株A42-338,发酵60 h乙醇含量为20.78 g/L,其乙醇产量较出发菌株提高了42.59%,且传代8次各代乙醇产量变化率不超过2.50%。将异常威克汉姆酵母A42-338在油茶籽壳发酵培养基中发酵60 h乙醇含量为19.88 g/L,还原糖残糖含量为9.06 g/L,其中木糖残糖含量为1.79 g/L,葡萄糖残糖含量为7.27 g/L,木糖利用率为84.61%,葡萄糖利用率为81.05%,糖转化率为0.40 g乙醇/g糖。因此,ARTP诱变是一种高效可行的酵母菌育种方法。  相似文献   

5.
为提升Nakazawaea ishiwadae GDMCC 60786产乙酸乙酯的能力,通过物理诱变常压室温等离子体和化学诱变甲基磺酸乙酯、亚硝基胍筛选突变菌株。利用三丁酸甘油酯初筛、摇瓶发酵二筛和外加底物发酵三筛。同时,对突变菌株进行遗传稳定性、溶血性和耐药性体外安全性评价。结果表明:对出发菌株进行诱变处理,最终获得1株高产乙酸乙酯、遗传稳定性良好及体外安全性良好的突变菌株N5,将该诱变菌连续传代5次,得到乙酸乙酯含量的平均值为764.52 mg/L,葡萄糖转化率达到38.22%,与出发菌株相比,乙酸乙酯提高了1.90倍,葡萄糖转化率提高了25.03%。外加乙醇后,突变菌株N5乙酸乙酯质量浓度为1 426.81 mg/L;但外加乙酸后,该菌株不生长,并失去产酯能力,表明其对乙醇耐受性强于乙酸。同时发现24 h时,突变菌株N5的酯酶、乙酰辅酶A和醇酰基转移酶活性均达到最大值。本研究构建了一套适用于该菌株的诱变体系。  相似文献   

6.
为进一步提高凝结芽孢杆菌发酵木糖生产L-乳酸的产量和转化率,以实验室保存的一株能利用木糖产L-乳酸的野生型凝结芽孢杆菌菌株NL01为出发菌株,通过等离子体诱变育种技术和平板菌落初筛、摇瓶复筛,最终得到一株木糖耐受力强、L-乳酸产量高、遗传特性稳定的正向突变菌株NL-CC-17。该突变菌株是目前已报道的木糖耐受力最高的菌株。当以100 g/L的木糖为底物,50 ℃发酵72 h后,L-乳酸产量达到82.30 g/L,糖酸转化率为92.37%,L-乳酸产量较出发菌株提高21.51%,糖酸转化率提高了16.00%。通过初步优化发酵条件,确定该菌株最佳发酵温度为50 ℃,实验范围内最佳发酵pH值为5.5。  相似文献   

7.
以酿酒酵母AY12为出发菌株,采用传统人工诱变育种与基因组重排技术相结合的方法选育出耐高温且高产乙醇的酿酒酵母菌株.通过将出发菌株进行紫外诱变,获得酿酒酵母突变群体,并从中筛选出耐高温且高产乙醇的23株突变株作为正向突变文库;将该文库通过酵母高效产孢与杂交反应实现突变文库的全基因组重排,筛选得到的基因组重排最优菌LYQ-F1的高温耐受性较出发菌株AY12明显提高,且在高温模拟发酵工艺中其乙醇产量较出发菌株提高了22.1%.  相似文献   

8.
为了实现混合糖发酵产乙醇过程中葡萄糖和木糖的同步利用,采用基因删除技术,经代谢工程改造,构建了葡萄糖/木糖选择性代谢产乙醇大肠杆菌,并通过摇瓶发酵试验研究双菌株共发酵产乙醇的发酵性能。在删除了甲酸、乙酸、乳酸和琥珀酸合成途径的出发菌株Escherichia coli B0013-1031 (pta-ackA,ldh A,pfl B,frd A)基础上,删除木糖异构酶基因xyl A,得到木糖不利用菌株B0013-2010;通过回复突变修复B0013-1031 xyl H功能,并删除其中葡萄糖运输和代谢途径关键酶基因pts G、glk和man Z,得到葡萄糖不利用菌株B0013-2011H。将携带Zymomonas mobilis乙醇合成途径关键酶基因pdc和adh B的质粒p Etac-PA分别转入上述菌株,获得产乙醇重组菌B0013-2010PA和B0013-2011HPA;以此双菌株共发酵葡萄糖和木糖合成乙醇,乙醇合成速率为1. 01 g/(L·h),葡萄糖和木糖消耗速率分别为2. 02 g/(L·h)和1. 05 g/(L·h)。双菌株共发酵显著改善了乙醇发酵过程葡萄糖和木糖的同步利用。  相似文献   

9.
以谷氨酸棒杆菌MH021为出发菌株,经硫酸二乙酯(DES)三次诱变处理,磺胺胍和丙二酸抗性平板筛选,得到一株高转化率谷氨酸菌株。在含有80g/L葡萄糖的发酵培养基中进行摇瓶发酵28h,糖酸转化率较原始菌株提高了22.1%。  相似文献   

10.
为了提高1株光滑球拟酵母(Candida glabrata)高产突变菌株的丙酮酸产量和底物转化率,对发酵过程进行了系统优化。首先,对诱变筛选获得的7株菌株进行发酵验证,确定最佳菌株为C. glabrata 4H2。对种子培养基重要成分及浓度进行优化,确定最佳氮源为大豆蛋白胨,质量浓度为10 g/L。突变菌株在30℃条件下摇瓶发酵52 h,产量达到(48. 56±0. 46) g/L,生产强度为0. 93 g/(L·h),糖酸转化率为0. 46 g/g,比优化前分别提高了25. 0%、52. 5%和43. 8%。基于上述结果,在15 L发酵罐中进行发酵条件优化,确定了以初始葡萄糖质量浓度为80 g/L,当葡萄糖质量浓度剩余55 g/L时,恒速流加70 g/L葡萄糖的补料发酵工艺,最终丙酮酸的产量达到最高,为(86. 63±0. 29) g/L,较摇瓶水平提高了78. 4%,生产强度为1. 07 g/(L·h),糖酸转化率为0. 78g/g。研究表明,发酵过程优化强化光滑球拟酵母生产丙酮酸是一种有效的方法,该研究为进一步提升工业水平丙酮酸发酵性能奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号