首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
通过单因素与正交实验优化了乙醇注入-高压均质法制备Vc纳米脂质体悬浮液的工艺,并制备了Vc前体脂质体.得到Vc纳米脂质体悬浮液的最佳制备工艺为:Vc添加量160mg,胆固醇与卵磷脂的质量比1∶5,Tween80与卵磷脂的质量比4∶5,水合温度55℃;按此最佳工艺制备的Vc纳米脂质体悬浮液平均包封率、平均粒径、多分散指数分别为78.11%、89.62nm、0.160;经冷冻干燥后得到的Vc前体脂质体的平均粒径、多分散指数分别为121.14nm、0.195.贮存稳定性实验结果表明,Vc纳米脂质体悬浮液与Vc前体脂质体的稳定性都受贮存温度与贮存时间的影响;但后者贮存稳定性高于前者.  相似文献   

2.
鱼油纳米脂质体的制备及其性质测定   总被引:1,自引:0,他引:1  
采用响应面法优化乙醇注入-动态高压微射流法制备鱼油纳米脂质体的工艺,并对其理化性质进行了初步测定。结果表明:制备鱼油纳米脂质体的最佳工艺为:磷脂浓度29 mg/mL,m(磷脂)∶m(鱼油)∶m(胆固醇)∶m(吐温-80)=10∶2∶2.5∶1,微射流压力150 MPa,微射流处理次数2次。在此条件下脂质体的包封率为76.9%,平均粒径128.1 nm,Zeta电位-20.11 mV。乙醇注入-动态高压微射流法制备的鱼油纳米脂质体粒径小且分布均匀(多分散指数0.258),具有较高的包封率和稳定性。  相似文献   

3.
辅酶Q10纳米脂质体配方与工艺优化研究   总被引:2,自引:0,他引:2  
采用乙醇注入-超声法制备辅酶Q10纳米脂质体,以包封率、保留率、平均粒径以及平均粒径的变化程度作为响应指标,应用正交试验法优选辅酶Q10纳米脂质体的配方和制备工艺。最佳配方为磷脂:胆固醇:吐温80:辅酶Q10=2.5:0.4:1.8:1.2(W/W),水相为0.01mol/L磷酸盐缓冲液(pH7.4);最佳制备工艺条件为乙醇用量1ml,搅拌时间10min,水化温度45℃,超声功率450W。以优化配方和工艺制得的脂质体形态均匀,粒径分布范围在20~300nm之间,平均粒径为68nm,包封率高于95%,4℃下贮存四个月,粒径分布无显著变化,平均粒径的变化程度小于10%,保留率高于90%。经优化得到的辅酶Q10纳米脂质体配方合理、工艺简便可行、包封率高、稳定性好。  相似文献   

4.
研究三聚磷酸钠(TPP)修饰对叶黄素纳米脂质体的影响。以叶黄素为研究对象,采用乙醇注入法制备叶黄素纳米脂质体,并采用TPP对叶黄素纳米脂质体进行修饰,考察了粒径、电位分布和体外释放性能。通过单因素和正交试验优化得到了叶黄素纳米脂质体的最佳制备工艺条件:当TPP用量为30 mg/m L,温度60℃,修饰时间1.0 h时,此条件下叶黄素纳米脂质体包封率为98.90%,比修饰前提高了4.4%。修饰后的叶黄素纳米脂质体释放性能明显提高。  相似文献   

5.
研究以玉米黄色素为原料,采用乙醇注入法制备玉米黄色素纳米脂质体。通过单因素和正交试验,优化玉米黄色素纳米脂质体的制备工艺,得到了玉米黄色素纳米脂质体的最佳制备工艺条件为:当玉米黄色素添加量为5 mg/m L,卵磷脂与胆固醇的质量比为4:1,温度为50℃,此条件下玉米黄色素纳米脂质体包封率为89.82%,平均粒径为70.89 nm。  相似文献   

6.
为了达到避免亚麻籽油氧化和提高机体消化吸收的目的,通过纳米脂质体包埋技术,采用乙醇注入-超声法制备亚麻籽油纳米脂质体。由单因素实验优化亚麻籽油纳米脂质体制备工艺,并对制备的脂质体进行了表征,对其体外释放性能进行了研究。结果表明:制备亚麻籽油纳米脂质体的最佳工艺条件为磷酸盐缓冲液p H 6.6、亚麻籽油添加量40%(占大豆卵磷脂、β-谷甾醇和吐温-80总量的比例)、超声时间20 min、超声功率141 W,在此条件下亚麻籽油纳米脂质体的包封率为84%,平均粒径为97 nm,平均电位为-3.5 m V,多分散指数为0.226;在透射电镜下观察到的亚麻籽油纳米脂质体呈圆球状而且分散均匀;在模拟胃肠液消化过程中,亚麻籽油纳米脂质体的释放行为分别符合零级动力学方程和Higuchi方程。  相似文献   

7.
采用薄膜-超声法制备番茄红素纳米脂质体,并以纳米脂质体包封率为主要评价指标,采用正交设计法优化番茄红素纳米脂质体的配方。结果表明:番茄红素纳米脂质体的最佳配方比为:番茄红素:胆固醇:卵磷脂=2:15:100;最佳水合介质是pH7.0的PBS缓冲溶液;最适洗膜温度34℃。按该工艺组合制备3批番茄红素纳米脂质体,包封率的平均值为49.88%±0.19%,载药量为0.86%±0.1%,平均粒径小于40nm。按优化工艺可制得包封率稳定、粒径较小、分布均匀的微球体番茄红素纳米脂质体。  相似文献   

8.
柠檬烯纳米脂质体的制备及其性质测定   总被引:2,自引:0,他引:2  
以柠檬烯为原料,利用乙醇注入法制备柠檬烯纳米脂质体。在单因素试验基础上,以胆固醇添加量、柠檬烯添加量、磷酸盐缓冲溶液(phosphate buffer solution,PBS)的温度为影响因素,以包封率为响应值,根据BoxBehnken试验设计原理,采用3因素3水平的响应面分析法优化柠檬烯脂质体的制备工艺,得到柠檬烯脂质体的最佳制备工艺条件为:胆固醇的添加量为8.8 mg、柠檬烯添加量为12.7 mg、PBS温度为51℃,在此条件下柠檬烯纳米脂质体的包封率为(67.44±0.58)%,与模型预测值相对误差为0.4%,重现性良好,平均粒径为(165.4±2.08)nm,PDI为(0.185±0.011),Zeta电位值为(-16.23±0.569)m V。  相似文献   

9.
目的寻找到制备薏苡仁油纳米脂质体的最佳处方。方法:采用薄膜超声法制备薏苡仁油纳米脂质体,以薏苡仁油脂质体的包封率为主要评价指标并综合考虑薏苡仁油脂质体的粒度,采用正交设计法优化薏苡仁油脂质体的配方,寻找到制备薏苡仁油脂质体的最佳配方和最优工艺为:卵磷脂与胆固醇的质量比为3∶1、PBS缓冲溶液pH为6.8、超声功率为90%、超声时间30 min,按该处方工艺组合制备两批薏苡仁油脂质体,包封率平均值为83.6%,粒径为355 nm。  相似文献   

10.
焦岩  李大婧  刘春泉  肖亚冬 《食品科学》2017,38(18):259-265
以叶黄素晶体为原料,采用乙醇注入法制备叶黄素纳米脂质体。在单因素试验基础上采用响应面试验,优化叶黄素纳米脂质体的制备工艺,得到了叶黄素纳米脂质体的最佳制备工艺条件为:叶黄素用量0.51 mg/m L、卵磷脂与胆固醇(质量比4∶1)用量5.0%、pH 7.4、温度62.9℃。此条件下叶黄素纳米脂质体包封率为(91.20±0.56)%,平均粒径为(226.8±10.62)nm;透射电子显微镜分析显示,所制备的叶黄素纳米脂质体呈球形纳米结构,叶黄素在纳米脂质体内部均匀分布;1,1-二苯基-2-三硝基苯肼(1,1-dipheny1-2-picrylhydrazyl,DPPH)自由基清除研究结果表明,叶黄素及其纳米脂质体的DPPH自由基清除活性与其质量浓度呈正相关,叶黄素纳米脂质体可有效提高叶黄素的热稳定性和抗氧化性能。  相似文献   

11.
焦岩  高嘉宁  常影 《中国油脂》2021,46(3):62-67
采用亲水性阳离子多肽多聚赖氨酸(ε-poly-L-lysine,ε-PLL)通过静电吸附作用修饰叶黄素纳米脂质体(LUT-NLP),构建新型ε-PLL修饰纳米脂质体载运体系,提高对脂溶性叶黄素的包封和释放性能。采用反向溶剂法制备LUT-NLP,通过单因素试验和正交试验优化ε-PLL修饰LUT-NLP的工艺条件,并考察修饰前后LUT-NLP的结构特征和体外释放性能。结果表明:在ε-PLL用量0.08%、pH 6.0、修饰时间2.0 h时,叶黄素的包封率可达95.36%;动态光散射分析表明修饰后的脂质体平均粒径为(299.4±8.4) nm,多分散指数(PDI)降低(<0.3),膜电位升高;透射电子显微镜结果显示由于静电吸附作用,ε-PLL与脂质体表面结合形成保护包覆结构;体外释放性能评价结果显示,经ε-PLL修饰的LUT-NLP在胃肠液环境中对叶黄素的释放率显著升高。ε-PLL修饰可改善脂质体结构,增强对脂溶性叶黄素的包封效果和胃肠消化释放性能。  相似文献   

12.
The objective of this work was to determine the effect of the incorporation of plant sterols on the stability and encapsulation efficiency of soy phospholipids vesicles. Small, unilamellar liposomes were prepared using high pressure homogenization at pH 7. Two types of commercial plant sterol preparations were employed: a water and oil soluble. The model hydrophilic molecule used for encapsulation efficiency studies was ascorbic acid. The lipid vesicles were prepared with a total lipid concentration of 150 mg mL?1, and plant sterols were incorporated at two different phospholipid/plant sterol mix ratios: 14/1 and 13/2 (g/g). All the liposomes obtained showed an initial monomodal size distribution with an average diameter between 115 and 150 nm (with a coefficient of variation <10%), depending on the preparation. Incorporation of plant sterols increased the vesicle size and their encapsulation efficiency, regardless of the method of preparation. Dilution of the vesicles in imidazole buffer with or without glucose showed a reduction in the encapsulation over time in all cases, with differences in stability depending on the method of preparation. This work clearly showed that, when preparing liposomes using high pressure homogenization, the presence of plant sterols affects their colloidal stability and encapsulation efficiency.  相似文献   

13.
Ferrous glycinate nanoliposomes prepared by the reverse-phase evaporation method (REV) from egg phosphatidylcholine (EPC) were investigated, based on the encapsulation efficiency, transmission electron microscopy (TEM), size distribution, and zeta potential. The nanoliposomes had high encapsulation efficiency, and TEM photomicrographs of nanoliposomes clearly showed their spherical shape. The size distribution and zeta potential indicated the stability of the nanoliposome suspensions. Retention ratio and size distribution of ferrous glycinate nanoliposomes were used to determine the influence of storage period, sonication and boiling water on the stability of ferrous glycinate nanoliposomes. Furthermore, in vitro stability of ferrous glycinate nanoliposomes in simulated gastrointestinal juice was evaluated. The nanoliposomes showed an acceptable stability in simulated gastrointestinal juice at 37 °C for 5 h. According to the results, ferrous glycinate nanoliposomes may be fit for the oral administration of ferrous glycinate and be used for the fortification of foodstuffs.  相似文献   

14.
本实验分别利用高压均质、空化射流和超声破碎3 种均质方式制备以大豆分离蛋白和磷脂酰胆碱包裹的鱼油纳米乳液和微胶囊,并对纳米乳液粒径、Zeta-电位、稳定性、黏度、乳化产率及微胶囊形貌、理化性质、稳定性进行比较分析,研究均质工艺对鱼油纳米乳液和微胶囊理化性质的影响。结果发现,空化射流工艺制备的纳米乳液平均粒径小,乳化产率和乳液稳定性较高,经过空化射流10 min制备的微胶囊包埋率达87.44%,溶解度较高,微胶囊颗粒表面形态饱满、致密、无裂纹和空隙,氧化稳定性和热稳定性较好。高压均质和超声破碎制得的纳米乳液平均粒径大,乳化产率和乳液稳定性较低,经过100 MPa高压均质和400 W超声破碎制得的微胶囊包埋率分别为80.36%和78.64%,溶解度相较于空化射流差,微胶囊颗粒表面分别出现微孔和较大的孔洞,氧化稳定性和热稳定性较差。傅里叶变换红外光谱分析结果表明3 种均质工艺均有较好的包埋效果。通过实验可以得出空化射流均质工艺制备的鱼油纳米乳液及微胶囊在产品性能上要优于其他两种均质工艺。本研究可为鱼油纳米乳液和微胶囊产品的均质工艺选择以及应用评价体系的构建提供理论依据。  相似文献   

15.
茶多酚脂质体的制备和物化性质研究   总被引:2,自引:0,他引:2  
本文采用薄膜超声分散法制备茶多酚脂质体以提高茶多酚的生物利用率.在制备工艺研究中运用响应面分析,确定其最佳工艺条件:药脂比为1∶8,卵磷脂与胆固醇比为4∶1,缓冲液pH值为6.62,超声时间为3.5 min.理论最佳包埋率60.36%,实际包埋率为60.09±.69%.并对其理化性质进行了考察,平均粒径为160.4 n...  相似文献   

16.
本文以橙皮精油为芯材,变性淀粉和麦芽糊精为壁材,通过高压(1000、2500、3500和22000 psi)均质制备了不同粒径橙油乳液,从而探讨乳液粒径对喷雾干燥橙油微胶囊平均粒径、包埋率、总油量、含水量、微观形貌以及重组乳液粒径分布的影响。同时以柠檬烯氧化程度评价微胶囊稳定性并预测其货架期。结果表明,均质压力越高,乳液粒径越小。乳液粒径对微胶囊的总油量(1.5 g/20 g)、包埋率(>95%)和含水量(<4%)没有明显影响,但会影响微胶囊的平均粒径、微观形貌以及重组乳液的粒径分布。乳液粒径越小,微胶囊平均粒径越小,表面越光滑,重组乳液也具有更窄的粒径分布。微胶囊在37 ℃贮藏5周,经零级动力学方程拟合氧化柠檬烯/柠檬烯(mg/g)变化的结果表明,以22000 psi制备的微胶囊货架期可长达11周左右,是其余微胶囊货架期的2.97~4.63倍。研究结果可为喷雾干燥精油微胶囊的工艺优化及质量控制提供理论参考。  相似文献   

17.
李畅  薛璐  芦晶  逄晓阳  张书文  吕加平 《食品科学》2022,43(19):110-117
本实验通过高压微射流均质法制备二十二碳六烯酸(docosahexaenoic acid,DHA)藻油脂质体,以平均粒径、包封率为主要评价指标,研究大豆磷脂与胆固醇质量比、吐温-80用量、高压微射流均质压力等因素对DHA藻油脂质体的影响。在单因素试验基础上,通过响应面优化试验确定最佳制备工艺参数:大豆磷脂质量浓度为20 mg/mL,大豆磷脂与DHA藻油质量比为4∶1,大豆磷脂与胆固醇质量比为11.9∶1,吐温-80用量为大豆磷脂质量的15%,高压微射流均质压力为138 MPa,均质次数5 次。在此条件下,DHA藻油脂质体平均粒径为(59.35±3.05)nm,多分散指数为0.189±0.025,包封率为(94.2±2.9)%。此外,对DHA藻油脂质体的理化性质进行了分析,通过透射电子显微镜观察发现DHA藻油脂质体的微观结构为球状,且分布均匀;通过差示扫描量热法分析发现,与未经高压微射流均质处理脂质体相比,高压微射流均质处理有效地提高了脂质体的相变温度;稳定性分析实验结果表明,经高压微射流均质处理过的DHA藻油脂质体具有良好的物理稳定性、贮藏稳定性及氧化稳定性。  相似文献   

18.
徐贤柱  魏允  饶华  王曼莹 《食品科学》2014,35(20):62-66
目的:研究绿原酸纳米脂质体制备及其抑菌性。方法:采用薄膜超声法制备绿原酸纳米脂质体,并用扫描电镜和粒度仪分析测定其形貌及粒径,考察膜材比、药脂比及超声时间对包封率的影响,最后对其体外稳定性和抑菌能力进行评价。结果:胆固醇与卵磷脂质量比1∶8、绿原酸与膜材质量比1∶10、超声时间15 min所制备的绿原酸纳米脂质体呈椭圆形,形态规整,粒径在110 nm左右,分散性良好,包封率和载药量最高分别达到87.5%和36%;紫外测试表明绿原酸被成功包覆在脂质体中;体外缓释实验表明,在24 h和14 d中绿原酸纳米脂质体均释放稳定;在抑菌实验中,绿原酸纳米脂质体与绿原酸和四环素相比具有更持久的抑菌能力。结论:采用薄膜超声法制备的绿原酸纳米脂质体具有很好的形貌和分散性能,也具有很好持续抑菌能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号