首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用5kWCO2激光器,在镍基高温合金表面熔覆纳米Al2O3/钴基合金复合材料,制备了涂层。利用光学显微镜、扫描电镜和透射电镜分析了熔覆层的组织结构。结果表明,加入纳米Al2O3,界面的生长形态发生变化,由细长的柱状树枝晶转变为较短的树枝晶;纳米Al2O3含量大于1%时整个断面获得等轴枝晶组织;纳米Al2O3作为异质形核的核心,细化了组织;纳米Al2O3在熔覆层中分布不均匀,促进了γ-Co向ε-Co的转变;熔覆层的亚结构为层错。对熔覆层的组织形成机理进行了分析。  相似文献   

2.
激光表面熔覆制备ODS Ni基高温合金涂层的凝固组织   总被引:1,自引:0,他引:1  
采用横流CO2激光,在Ni基高温合金表面制备了纳米Al2O3弥散强化(ODS)Ni基合金熔覆层。利用光学显微镜、扫描电镜及EDS附件分析了熔覆层的组织结构。结果表明:界面晶粒的生长方向为垂直于界面的“外延式”生长;加入纳米Al2O3,界面的生长形态发生变化,由细长的柱状树枝晶转变为较短的树枝晶;纳米Al2O3含量增大至1%时整个断面获得等轴枝晶组织;纳米Al2O3作为异质形核的核心,细化了组织。  相似文献   

3.
利用5 kWCO2激光器,在Q235低碳钢表面熔覆微米或纳米Sm2O3/Ni基合金复合材料,制备了涂层.利用光学显微镜、扫描电镜和X射线衍射仪,比较分析了熔覆层的组织及相结构,利用显微硬度计和MM 200型环-块滑动磨损机检测了熔覆层的硬度和耐磨性.结果表明,熔覆层的主要相为γ-Ni和Cr23C6,且出现了Fe7Sm,Ni3Si和Ni3B;加入稀土氧化物熔覆层的冶金结合区白亮带变窄;加入纳米Sm2O3不仅细化了熔覆层的组织,而且形成了大量的等轴晶;加纳米Sm2O3比微米Sm2O3的熔覆层的显微硬度和相对耐磨性大幅度提高,磨损机理由磨粒磨损和黏着磨损转变为微动磨损.  相似文献   

4.
研究了纳米CeO2对Co基合金激光熔覆层宏观质量、显微组织、相结构和性能的影响。采用OLYMPAS-PME3显微镜、PHILIP XL30扫描电镜和XD-3A型衍射仪分析了熔覆层的显微组织和相结构,利用MM-200环-块滑动磨损试验机及JSM-35C型扫描电镜检测了熔覆层的耐磨性和分析了其磨损机理。结果表明:纳米CeO2的加入能使Co基熔覆层表面平整而无气孔和裂纹,使熔覆层的宏观质量得到改善;纳米CeO2在熔覆层中能够细化组织,并且可以抑制树枝晶的生长,促使熔覆层形成了等轴晶;添加纳米CeO2后不仅有新相CeCo2产生,并且一部分-γCo转变为-εCo相。在2.0 kW功率下加入1.5%纳米CeO2时熔覆层的相对耐磨性最好,熔覆层由磨粒磨损和黏着磨损转变为微动磨损,过量的CeO2加入,反而降低耐磨性。  相似文献   

5.
在Q235钢表面用等离子弧熔覆Ni-Cr-B-Si-Fe铁基合金涂层及添加不同含量Al2O3 TiO2铁基合金复合涂层,比较研究了这两种涂层的组织、显微硬度和磨损性能。结果表明,添加Al2O3 TiO2后的铁基复合涂层界面的生长形态发生变化,由初生的细长柱状树枝晶转变为小的枝晶,并且提供了形核的核心,细化了晶粒;其组织主要由晶粒细小的γ-Fe为基,以Cr23C6,Fe3C,Al2O3 TiO2为增强相的复合涂层;熔覆层的显微硬度可达600~655HV0.2。  相似文献   

6.
纳米Y2O3弥散强化Ni基合金激光熔覆层   总被引:1,自引:0,他引:1  
研究了纳米YO3对Ni基合金激光熔覆层显微组织、相结构和性能的影响。结果表明:加入纳米Y2O3的Ni基激光熔覆层出现大量细小、无方向性生长的等轴晶;熔覆层主相为γ-Ni,此外还有Cr23C6、Ni4.6Si2B和Ni17Y2等;加入1.5%纳米Y2O3的熔覆层显微硬度值大幅度提高,其耐磨性比纯Ni基提高5倍多。磨损机理由较为严重的粘着磨损转变为微动磨损。  相似文献   

7.
激光熔覆AZ91D镁合金的界面特征和耐磨性研究   总被引:1,自引:0,他引:1  
在AZ91D镁合金表面激光熔覆Al Al2O3粉末制得复合涂层.用X-ray衍射确定激光熔覆层的相结构,用光学显微镜和扫描电子显微镜(SEM)观察激光熔覆层和AZ91D基体之间的结合区域的生长形态.结果显示,在激光熔覆层中Al2O3颗粒的分布是均匀的,结合区晶体的生长形态是一种独特的柱状树枝晶.温度梯度、树枝晶生长和熔池的凝固速度均影响它的形成.与AZ91D基体相比,激光熔覆层的耐磨性得到了改进.  相似文献   

8.
纳米Y2O3-Co基合金激光熔覆复合涂层的分析   总被引:2,自引:1,他引:1       下载免费PDF全文
采用纳米Y2O3和Co基合金粉末,并利用激光表面熔覆技术和堆焊技术在Ni基合金基体上制备了纳米Y2O3-Co基合金复合涂层.运用扫描电镜(SEM)等测试方法,研究了复合涂层的显微组织和显微硬度,通过磨损试验和腐蚀试验分析了激光熔覆涂层和单一堆焊层的耐磨性和耐蚀性.结果表明,激光熔覆层显微组织由熔合区、细等轴状枝晶区及粗枝晶区构成;激光熔覆层的显微硬度由堆焊层的512.8 HV提高到868.9HV;激光熔覆层的耐磨性提高了51.2倍,40 min磨损量由堆焊层的25.6 mg降低到激光熔覆层的0.5 mg;激光熔覆层在10%HCl、10% HNO3和10% NaOH中的耐腐蚀性均比堆焊表面有明显改善.  相似文献   

9.
采用激光熔覆技术在3种扫描速率下制备了NiCr/Cr3C2复合涂层,分别采用扫描电镜(SEM)、X射线衍射仪(XRD)、显微维氏硬度计、摩擦磨损试验机表征了熔覆层的组织形貌、硬度与摩擦磨损性能。结果表明,激光扫描速率从2 mm/s升至4 mm/s时,熔覆层组织从以树枝晶为主转变为以等轴晶为主,缺陷由气孔转变为大尺寸间隙与裂纹。扫描速率低于3 mm/s时,Cr3C2熔化分解导致熔覆层主要含有Cr7C3,随着激光扫描速率增加,Cr3C2熔化程度降低,熔覆层以Cr7C3与Cr3C2为主。因此,随着激光扫描速率从2 mm/s升高至4 mm/s,熔覆层硬度从400 HV0.3提升至780 HV0.3。不同激光扫描速率下熔覆层磨损均以磨粒磨损为主,但是由于结构致密和硬度较高,3 mm/s涂层磨损量最小,耐磨性最好。  相似文献   

10.
利用5 kW CO2激光器,在Q235低碳钢表面熔覆微米或纳米CeO2/Ni基合金复合材料,制备了涂层.利用光学显微镜、扫描电镜和X射线衍射仪分析比较了熔覆层的组织、磨损彤貌及相结构,利用MM-200环-块式滑动磨损机检测了熔覆层的耐磨性.结果表明:熔覆层的主要相为γ-Ni和Cr23C6以及CeNi5,Ni3Si和Ni3B等;加入微米Ce02的Ni基激光熔覆层组织明显细化,并有大量的放射状等轴晶;加入纳米CeO2的Ni基激光熔覆层出现大量更加细小的等轴晶,并且组织致密.含纳米CeO2的Ni基熔覆层与纯Ni基的相比,耐磨性大幅度提高,磨损机理由黏着磨损转变为微动磨损.  相似文献   

11.
12.
13.
扫描电镜观察显示胫骨是一种由羟基磷灰石和胶原蛋白组成的自然生物陶瓷复合材料.羟基磷灰石具有层状的微结构并且平行于骨的表面排列.观察也显示这些羟基磷灰石层又是由许多羟基磷灰石片所组成,这些羟基磷灰石片具有长而薄的形状,也以平行的方式整齐排列.基于在胫骨中观察到的羟基磷灰石片的微结构特征,通过微结构模型分析及实验,研究了羟基磷灰石片平行排列微结构的最大拔出能.结果表明,羟基磷灰石片长而薄的形状以及平行排列方式增加了其最大拔出能,进而提高了骨的断裂韧性.  相似文献   

14.
15.
钢材打捆机控制系统智能化技术的研究   总被引:1,自引:0,他引:1  
钢材打捆机是一种用于轧钢精整工艺的新型自动化设备,其控制系统基于SiemensS7 PLC和TP7触摸屏。系统的智能化技术主要包括:液压高低压自动控制、在线监视、离线故障检测、多台设备协同工作、可视化人机交互技术。本文描述了这些技术的原理与实现方法。  相似文献   

16.
17.
论述了CAD技术中参数化设计的三种建模方法,重点介绍了基于特征的参数化建模原理。在此基础上,分析机械设计中的机构结构,归纳出其零件的几何特征构成。设计了机构CAD图形库,并提出了该图形库生成步骤和人机交互界面。  相似文献   

18.
刘兴  赵霞 《表面技术》2008,37(1):37-39
采用激光辐照对FeCrAlW电弧喷涂层的组织进行致密化处理,借助扫描电镜和X衍射对涂层的组织进行了分析.测试了涂层的显微硬度.结果表明:涂层组织致密度提高,孔隙率明显降低.随着激光扫描速度的增加,涂层的显微硬度降低.在较低的扫描速度下,涂层与基体之间形成互熔区,涂层与基体之间产生良好的冶金结合.  相似文献   

19.
Metal Science and Heat Treatment - The effect of parameters of hot rolling and controlled cooling on formation of the martensite-austenite component of bainitic and ferritic-bainitic structures in...  相似文献   

20.
V法造型工艺在铸造行业已经被广泛应用,但V法造型设备的发展却比较缓慢。由于非标设备的缘故,设备在安装调试和使用过程中,经常发生故障,影响设备的正常使用。本文列举了V法造型设备经常出现的故障,分析了故障的原因和解决方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号