首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 812 毫秒
1.
利用水溶液电沉积法制备La Mg_2Ni_9储氢合金膜,通过测定合金膜的循环伏安曲线(CV)、交流阻抗(EIS)、Tafel极化曲线等研究其电化学性能,采用扫描电镜(SEM)、X射线衍射(XRD)、能谱(EDS)对合金膜表面形貌、结构及组成进行研究。结果表明:电沉积电流密度为40 A/dm~2时,La Mg_2Ni_9合金膜的表面粗糙并伴有裂纹,析氢电流密度为5.37A/dm~2,表观活化自由能△G~≠最低为47.26 k J/mol,证明合金膜良好的析氢性能;吸附值Q达到最大值为0.091μF·cm~(-2),表明合金膜具有较高的储氢性能。  相似文献   

2.
通过电泳沉积和电化学还原相耦合的方法制备柔性的石墨烯自支撑薄膜电极。首先,通过电沉积的方法在石墨基底上制备氧化石墨烯薄膜,然后通过对氧化石墨烯薄膜进行电化学还原,得到电容性能优异的石墨烯薄膜电极材料。通过SEM、XRD、FT-IR和电化学测试对石墨烯的表面形貌、结构和电容性能进行表征。结果表明:制备的石墨烯电容性能良好,在1 mol/L的硫酸电解液中,循环伏安扫速为10 mV/s时,比电容为254 F/g;当电流密度为83.3 A/g时,比电容能保持在132 F/g;最大功率密度可达39.1 kW/kg,能量密度为11.8 W·h/kg;充放电循环1000次后,电容能保持97.02%,表明该石墨烯薄膜电极材料具有优异的循环稳定性能。  相似文献   

3.
首先以AlO2-为铝源,采用三元共沉淀法制备前驱体Ni_(0.8)Co_(0.15)Al_(0.05)(OH)_2。对前驱体进行500℃高温处理,随后与过量的锂盐混合均匀,在氧气气氛下700℃煅烧12 h制得LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(NCA)材料。采用X射线衍射仪(XRD)测试可知,所得的NCA材料呈典型的α-NaFeO_2层状结构,属于R-3m空间群。扫描电子显微镜(SEM)测试显示,NCA为粒径5~6μm的球状颗粒。材料在电流倍率为0.1C下首次放电容量为167.1mAh/g,循环200次以后容量保持率为96.2%。倍率测试表明,0.1、10 C下NCA的容量分别为184.0、112.7 mAh/g,到恢复到0.1 C时,容量仍可达179.7mAh/g,具有比较好的倍率性能。  相似文献   

4.
采用热分解法制备了新型IrO_2-CeO_2-G/Ti复合电极。采用SEM、TEM、XRD和XPS等测试手段分别对不同IrO_2含量的电极进行表征。采用循环伏安法、恒流充放电法和电化学阻抗谱法对电极的电化学行为进行研究。结果表明,IrO_2涂覆载量为2.5 mg/cm~2的电极具有最大的比电容值459.5 F/g。在5 mA/cm~2电流密度下,经5000次充放电循环后IrO_2涂覆载量为2.5 mg/cm~2电极比电容仍能保持97.8%。该种复合电极材料因其独特的元素组成和良好的赝电容性能,是一种理想的超级电容器电极材料。  相似文献   

5.
在导电泡沫镍基底上通过一种简便的离子交换反应原位合成出了硫化钴多孔疏松纳米针束阵列并直接用作超级电容器的电极。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对其结构和形貌进行了详细的表征。同时运用循环伏安(CV)、计时电位分析(CP)、电化学阻抗谱(EIS)等方法对其在3 mol/L KOH电解液中的电化学性能进行了分析,结果表明这种在泡沫镍基底上原位生长出的Co9S8多孔疏松纳米针捆束阵列在4 A·g~(-1)的电流密度下具有高达1400 F·g-1的比电容和优异的循环稳定性能。这种电极材料之所以具有如此优秀的电化学性能,主要归因于Co9S8纳米针捆束阵列的多孔疏松结构与3D泡沫镍基底之间的协同效应可以有效的增加电极材料与电解液之间的接触面积和提高整个电极的导电性。  相似文献   

6.
采用流变相法合成得到Li_(1.2+x)Ni_(0.1)Co_(0.2)Mn_(0.05)O_2(x=0, 0.036, 0.060, 0.096),探讨过锂量对结构和电化学性能的影响。X射线衍射(XRD)对样品进行结构分析证明所有样品具有典型的α-NaFeO_2结构和较小的阳离子混排度。扫描电镜(SEM)对样品进行表征证明不同过锂量的材料,颗粒相对均匀,表面光滑。电化学性能测试结果表明:最佳过锂量为x=0.036时,正极材料Li_(1.236)Ni_(0.1)Co_(0.2)Mn_(0.5)O_2在0.05C、2~4.8V测试条件下进行电化学性能测试,25和55℃下该材料初始放电容量分别为215.3和297.1 mAh·g-1,首次库伦效率分别为66.6%和84.6%,0.2 C下循环50次后容量保持率分别为89.0%和87.8%,且x=0.036时该材料具有最佳的倍率性能。  相似文献   

7.
以废旧的锂电池和化学镀镍废液为主要原料,制备了氧化石墨烯/镍铝双羟基复合金属氧化物复合材料。采用X-射线衍射仪、场发射电子显微镜和电化学方法对该复合材料进行了表征。研究表明,该复合材料呈现为网络状的纳米片,其表面具有特殊微孔结构。在1.0A/g电流密度下,复合材料电极的比电容可达1 184.3F/g;经过200次充/放电循环测试后,复合材料的比电容保持率仍可达98.3%,具有良好的充/放电循环稳定性。  相似文献   

8.
采用简易的固相反应法制备了(FeCoCrMnCuZn)_3O_4高熵氧化物粉体,采用XRD、SEM、TEM、XPS等方法对其进行表征。结果表明,随着煅烧温度的升高,Fe_2O_3、Cr_2O_3、MnO_2、CuO和ZnO相继固溶进尖晶石结构中;最终,在800℃煅烧2 h可得到单一尖晶石结构(面心立方,Fd-3m)的(FeCoCrMnCuZn)_3O_4氧化物,且各元素在晶粒内分布均匀,为典型的高熵氧化物特征。对合成的高熵氧化物(FeCoCrMnCuZn)_3O_4粉体进行电化学性能分析发现,当电流密度为1 A/g时,质量比电容为152.9 F/g。  相似文献   

9.
为了得到高比电容的电极材料,采用热分解法制备了不同温度下Ti/Ir0.4Sn0.6O2电极材料。运用X射线衍射(XRD)、差热分析、扫描电镜(SEM)和循环伏安法(CV)分别测试了该材料的晶体结构、表面形貌和电化学特性。结果表明:涂层的晶化温度高于360℃。320℃退火的电极表面有很多白色小颗粒析出,其活性氧化物较多。比电容受热处理影响较大,在280℃时电容值很小,可逆性低,320℃退火的电极比电容为454 F/g。该电极随着充放电循环次数的增加,比电容增加,经过9000次循环后,比电容才开始下降,经历10000次循环充放电后的比电容为493 F/g,比未经循环时还大10%。  相似文献   

10.
采用热分解法制备了新型IrO2-CeO2-G/Ti复合电极。采用SEM、TEM、XRD和XPS等测试手段分别对不同IrO2含量的电极进行表征。采用循环伏安法、恒流充放电法和电化学阻抗谱法对电极的电化学行为进行研究。结果表明,IrO2涂覆载量为2.5mg/cm2 的电极具有最大的比电容值459.5 F/g。在5mA/cm2电流密度下,经5000次充放电循环后IrO2涂覆载量为2.5mg/cm2电极比电容仍能保持97.8%。该种复合电极材料因其独特的元素组成和良好的赝电容性能,是一种理想的超级电容器电极材料。  相似文献   

11.
通过化学镀再电化学氧化的方法在铜片表面制备出带有微米微坑和微米微球的均一NiO/Ni(OH)2和B参杂的NiO/Ni(OH)2(B)两种电极材料,采用扫描电镜(SEM/EDX)、X射线衍射(XRD)、X射线光电子能谱(XPS)和电化学技术对所制备的两种电极材料进行表征和电化学性能测试。SEM、XRD和XPS的测试结果表明, 所制备的两种电极材料由Ni、NiO和Ni(OH)2组成,并且NiO/Ni(OH)2(B)中B的参杂量可达14.6wt%。循环伏安测量和恒电流充放电试验表明,两种电极材料均具有较高的电化学活性和可逆性;在1 A/g的充放电电流密度下, 两种NiO/Ni(OH)2和NiO/Ni(OH)2(B)电极材料经历10000次充放电循环后分别给出了1380 和1930F/g的比电容, 显示出较高的比电容特性和良好的电化学稳定性;电化学阻抗谱表明NiO/Ni(OH)2(B)电极材料较NiO/Ni(OH)2电化学反应电阻降低了约2个数量级;Ragone曲线揭示了所制备的两种电极材料具有较高的功率密度和较低的能量密度。B的参杂使得NiO/Ni(OH)2(B)电极材料表面氧化物含量增大并且形成微米微球形貌,增大了电极表面积以及与电解液的接触和润湿作用,降低了电极材料表面能带带隙能,从而导致较小的电化学反应电阻和电导率的提高是其显示优异赝电容性能的主要原因。  相似文献   

12.
为提高新型AB3型储氢合金La0.94Mg0.06Ni3.49Co0.73Mn0.12Al0.20的电化学性能,将球磨法制备的Ni-B-C粉末按不同重量比添加到合金中。采用X-射线粉末衍射仪(XRD)和扫描电子显微镜(SEM)分析合金的相结构和表面形貌,添加Ni-B-C粉末后,合金相结构没有变化,仍由LaNi5相和La2Ni7相两个相组成,但合金表面出现了细小颗粒。添加Ni-B-C粉末后,合金电极的最大放电容量和放电容量保持率均提高。当添加重量百分比为10%的Ni-B-C粉末后,电极的最大放电容量从346 mAh/g增加到363 mAh/g,50个循环后的放电容量保持率从70%提高到77%,交换电流密度I0与极限电流密度IL分别为106 mA/g和987 mA/g。动电位极化测试表明,电极的抗腐蚀能力也有所增强。研究结果表明,Ni-B-C可以提高AB3型储氢合金的综合电化学性能。  相似文献   

13.
Electrophoretic deposition in conjunction with electrochemical reduction was used to make flexible free-standing graphene-like films. Firstly, graphene oxide (GO) film was deposited on graphite substrate by electrophoretic deposition method, and then reduced by subsequent electrochemical reduction of GO to obtain reduced GO (ERGO) film with high electrochemical performance. The morphology, structure and electrochemical performance of the prepared graphene-like film were confirmed by SEM, XRD and FT-IR. These unique materials were found to provide high specific capacitance and good cycling stability. The high specific capacitance of 254 F/g was obtained from cyclic voltammetry measurement at a scan rate of 10 mV/s. When the current density increased to 83.3 A/g, the specific capacitance values still remained 132 F/g. Meanwhile, the high powder density of 39.1 kW/kg was measured at energy density of 11.8 W·h/kg in 1 mol/L H2SO4 solution. Furthermore, at a constant scan rate of 50 mV/s, 97.02% of its capacitance was retained for 1000 cycles. These promising results were attributed to the unique assembly structure of graphene film and low contact resistance, which indicated their potential application to electrochemical capacitors.  相似文献   

14.
超级电容器具有比电容高、循环寿命长和绿色无污染的特点,其优异的电化学性能备受关注。本文水热合成了NiMoO4/g-C3N4复合粉体,并将粉体涂覆在泡沫镍上制备了NiMoO4/g-C3N4电极材料。结果表明,NiMoO4/g-C3N4粉体形貌主要为NiMoO4纳米棒和团状g-C3N4,且NiMoO4纳米棒生长在g-C3N4纳米片上。在NiMoO4中加入30at%的g-C3N4能降低电容体系的等效串联电阻和扩散阻抗,有利于氧化还原反应的进行。相比于其他g-C3N4含量的电极材料,g-C3N4含量为30at%的NiMoO4/g-C3N4电极材料具有更高的比电容(584.3F/g)和更好的倍率特性。  相似文献   

15.
采用高温固相法合成了Cr3+掺杂的LiNi0.5Mn1.5O4正极材料,研究了掺杂量对材料物理性能和电化学性能的影响。利用XRD、SEM对材料的结构和形貌进行了表征,结果显示样品具有棱边清晰的尖晶石形貌。讨论了不同Cr3+掺杂量对LiCrxNi0.5-0.5xMn1.5-0.5xO4(x=0,0.05,0.1,0.15,0.2)正极材料性能的影响。充放电测试、循环伏安和交流阻抗测试结果表明:当Cr3+的掺杂量为x=0.1时(LiCr0.1Ni0.45Mn1.45O4)正极材料的性能最好,0.1C、0.5C、1C、2C及5C的首次放电比容量依次为131.54mAh g-1、126.84mAh g-1、121.28mAh g-1、116.49mAh g-1和96.82mAh g-1,1C倍率下循环50次,容量保持率仍为96.5%。  相似文献   

16.
A SnO2−RuO2 composite (SnRuO) thin film possesses unique electrochemical properties for a hybrid between batteries and supercapacitors due to the fact that the SnRuO system shows battery and supercapacitor characteristics simultaneously. SnRuO thin films were prepared through the magnetron co-sputtering method in order to investigate the feasibility of a monolithic thin film hybrid battery. The SnRuO thin film as an anode film for a secondary battery demonstrated a first discharge capacity of 1557 μAh/cm2·μm; the second discharge capacity was 52% of the first discharge capacity. The degree of capacity fade of the SnRuO thin film was almost the same as that of the SnO2 thin film, even though the capacity of the SnRuO thin film was larger than that of the pure SnO2. In addition, the SnRuO thin film showed a supercapacitor behavior and exhibited a specific capacitance of 14 mF/cm2 μm during 1000 cycles. These results suggest that SnRuO thin film could be used as a thin film supercapacitor as well as a thin film battery. Furthermore, this composite thin film holds promise for the fabrication of a monolithic thin film high power hybrid battery based on micro-processes.  相似文献   

17.
Nano-amorphous TiO2 was prepared by a sol-gel method. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the composite electrode material (TiO2-NiO-C) is made of powder with a grain size of 36.2 nm. Doping of nickel and graphite can increase the electrical conductivity and the specific surface area of nano-amorphous TiO2. The electrochemical properties of TiO2-NiO-C, such as self-discharge, leakage current, and cycle life, were studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge-discharge test. With a charge-discharge current density of 500 mA/g, the specific capacity of the TiO2-NiO-C composite material reaches 12.88 mAh/g. Also, the expense of capacity is only 3.88% after 500 cycles. The electrochemical capacitor with the electrode material of TiO2-NiO-C shows excellent capacity and cycling performance.  相似文献   

18.
NiO nanosheets were prepared by a facile and template-free hydrothermal process using l-arginine as the alternative precipitator and nickel sulfate as the nickel source. The as-synthesized materials were characterized by x-ray diffraction, Field emission scanning electron microscopy, N2 adsorption-desorption, and the electrochemical workstation. The results show that the novel NiO material possesses a large surface area of 121 m2/g and binary pore structure of micropore and mesopore. The electrochemical tests show that the NiO electrode exhibits a specific capacitance as large as 300 F/g at the current density of 1 A/g and the specific capacitance retention can maintain 84% after 500 cycles at the current density of 15 A/g in 6 mol/L KOH.  相似文献   

19.
In this paper, an electroless nickel plating and sol-gel combined technique used to prepare the Ni-P/TiO2 composite film on sintered NdFeB permanent magnet is described and the composite film was characterized by X-ray diffraction (XRD), environmental scanning electron microscopy (ESEM), and energy dispersive X-ray spectrometer (EDX). The corrosion resistance of Ni-P/TiO2 film was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The self-corrosion current density (icorr) of Ni-P/TiO2 composite film is 2.38μA/cm2 in 0.5mol/L H2SO4 solution about 33% of that of Ni-P coating and 0.22μA/cm2 in 0.5mol/L NaCl solution about 14% of that of Ni-P coating, respectively. In 0.5mol/L H2SO4 and 0.5mol/L NaCl solutions, the polarization resistance (Rp) of the composite film is 12.5kΩ cm2 and 120kΩ cm2, about 1.6 and 2 times that of Ni-P coating, respectively. The results indicate that Ni-P/TiO2 composite film has a better corrosion resistance than Ni-P coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号