首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 875 毫秒
1.
试验研究了Q345D级钢(%:0.18C、0.41Si、1.34Mn、0.05Nb、0.08V、0.024A1)Φ280 mm锻材淬-回火处理和正火处理后的组织和性能。结果表明,经890℃空冷200 s,水冷+570℃回火后的钢抗拉强度Rm≥630MPa,屈服强度Re≥455 MPa, -20℃冲击功AKV 28~40 J;910℃空冷正火后Rm≥575 MPa, Re≥390 MPa, -20℃ AKV42~59 J,均满足舵杆产品对力学性能的要求;淬-回火工件距表面30 mm的组织为回火索氏体+粒状贝氏体,中心组织为珠光体+少量粒状贝氏体,正火处理后工件表面与心部均为珠光体+铁素体组织。  相似文献   

2.
张迎晖  康永林  于浩  刘晓  方圆 《特殊钢》2005,26(6):32-34
用Gleeble-1500热/力模拟机研究了成分(%)为:0.20C-1.08Si-1.43Mn TRIP(相变诱导塑性)钢连续冷却时的组织,并测得动态CCT(连续冷却转变)曲线,得出冷却速度达10℃/s时出现粒状贝氏体,冷却速度15℃/s时得到板条贝氏体。在实验室模拟C-Si-Mn TRIP钢薄板坯连铸连轧工艺试验:用10 kg真空感应炉冶炼,成分(%)为:0.20C-1.54Si-1.55Mn的TRIP钢,钢锭尺寸为(mm):60×100×130,经7道次轧制成厚度6.40 mm板,终轧温度810℃,轧后空冷至700℃,再水冷至400℃模拟卷取。试验结果表明,该钢组织含有5.13%残余奥氏体,37.20%贝氏体,机械性能σb715 MPa,σs520 MPa,屈强比0.73,δ20%。  相似文献   

3.
采用热模拟试验机、高分辨透射电镜及金相显微镜等设备研究了V-Ti试验钢连续冷却相转变和强化机制。结果表明,低冷速下(0.5~1.5℃/s),组织为铁素体和珠光体;冷速增加(1.5~5℃/s),发生贝氏体相变,且贝氏体比例逐渐增加;高冷速状态(5~25℃/s),马氏体出现并逐渐作为主体组织。V-Ti试验钢强化机制主要为析出沉淀强化和细晶强化,晶粒内部弥散析出10~60 nm圆角矩形的V(C,N)+TiN粒子。优化冷速1.0~1.5℃/s开展25 mm HRB600产线试制,屈服强度≥630 MPa,抗拉强度≥820 MPa,断后伸长率≥20%,最大力总伸长率≥11%,强屈比≥1.25。  相似文献   

4.
开发的低碳贝氏体钢Q650(%:0.06~0.08C、1.6~1.8Mn、≤0.3Cr、≤0.06Nb、≤0.02Ti、≤0.15Mo、≤0.05V、≤0.002B)(20~40)mm×(1 600~3 200)mm钢板的生产流程为铁水预处理-120 t转炉-LF精炼-连铸-控轧-控冷。通过控制再结晶区单道次变形量≥15%,累积变形量≥50%,未再结晶区道次累积变形量≥60%,冷却速度15℃/s,终冷温度≥500℃,可获得不同类型的贝氏体相变组织,并具有良好的综合性能。  相似文献   

5.
开发的20 mm低成本铌钛硼微合金化低碳钢板(/%:0.06C、0.40Si、1.60Mn、0.010P、0.005S、0.050Nb、0.012Ti、0.002B)的生产流程为130 t顶底复吹转炉-LF-RH-250 mm板坯连铸-4300轧机轧制-直接淬火-回火工艺。通过终轧≥900℃,以≥20℃/s冷却速度直接淬火,500℃回火,20 mm钢板抗拉强度Rm为855 MPa,屈服强度R0.2771 MPa,延长率A 16%,0℃冲击功Akv2 217~238J, -40℃ Akv2 137~181J。该钢的回火组织为细小的贝氏体板条,宽度为0.5~1.0μm,并有较多弥散分布的30~90 nm Nb+Ti碳氮化物析出。  相似文献   

6.
张爱文 《特殊钢》2005,26(6):26-28
成分(%)为0.02C-1.55Mn-0.62Ni-0.53Cu-0.003 5 B-0.055V-0.019Ti-0.028Nb的超低碳贝氏体钢ULCB570,由试验室50 kg真空感应炉冶炼,锻80 mm厚板坯,经开轧温度1 150℃,终轧温度900℃空冷轧成25mm厚板材,并用Thermecmaster-Z热模拟试验机测试了该钢的形变奥氏体连续冷却转变曲线。结果表明,该钢形变后在0.130℃/s冷却下的组织为贝氏体-铁素体+第2相或析出物,轧态抗张强度σb为595 MPa,冲击韧性AKV为180 J,轧态+600℃时效时的σb增加至610 MPa,AKV增加至202 J,达到570 MPa级钢板的性能要求。  相似文献   

7.
王生朝  赵刚  鲍思前 《特殊钢》2012,33(6):56-58
通过Thermecmastor-Z热模拟试验机研究了WL510钢(/%:0.090C、0.13Si、1.45Mn、0.005S、0.019P、0.040Al、0.020Ti、0.030Nb)粗轧后板坯(36 mm×1 500 mm)在1~36℃/s连续冷却条件下的相变和组织的变化,并用热膨胀法测定了试验钢连续冷却转变(CCT)曲线。结果表明,试验钢WL510在1~23℃/s低冷却速度下,主要形成多边形铁素体和少量珠光体;当冷却速度≥30℃/s时,主要组织为细针状铁素体、少量细珠光体和岛状马氏体/奥氏体(M/A)随着冷却速度的增加,试验钢组织明显变细。  相似文献   

8.
试验用250 mm×250 mm方坯EA4T车轴用钢(/%:0.23C,0.32Si,0.70Mn,0.014P,0.010S,0.18Mo,0.03V)的生产流程为60 t EBT EAF-LF-VD-8.4 t铸锭轧制-退火工艺。试验研究了880~920℃油淬、600~650℃回火工艺对该钢组织和力学性能的影响。经920 C+600℃、920℃+650℃和880℃+640℃淬-回火处理后,该钢的组织分别为马氏体、索氏体+马氏体和马氏体+贝氏体;880℃+640℃淬-回火处理后EA4T钢的力学性能为Rp0.2 525 MPa,Rm 720 MPa,A5 23%,U-5 mm纵向冲击功68~82 J,横向冲击功65~86 J,其组织和力学性能均符合EN13261标准要求。  相似文献   

9.
潘振东  吴昆  赵向东  林媛  张文康 《钢铁》2023,(3):111-118
为了满足高速电机转子对硅钢材料的力学要求,在实验室开发超高强度无取向硅钢,以期对大生产起到一定的借鉴意义。采用一次冷轧法和二次冷轧法两条工艺路线,使合金成分为3%Si-0.8%Al的试验钢退火板保留未再结晶组织,即用位错强化方法开发超高强度无取向硅钢。一次冷轧法开发的500、600 MPa级超高强度无取向硅钢磁极化强度J5 000可分别达到1.66、1.61 T。其中,退火工艺为675℃-4 min时,产品再结晶分数为81.2%,屈服强度Rp0.2为542 MPa;退火工艺为650℃-2 min时,再结晶分数为30.3%,屈服强度Rp0.2为656 MPa。二次冷轧法开发的600 MPa级超高强度无取向硅钢,退火工艺为650℃-2 min时,产品再结晶分数为30.7%,屈服强度Rp0.2为642 MPa;磁极化强度J5 000较一次冷轧600 MPa级产品提高约0.04 T,达到1.65 T;产品综合性能水平与日本制铁35HXT590T相当。试验钢的开始再结晶温度约为625℃。...  相似文献   

10.
殷胜  朱红丹 《特殊钢》2019,40(1):16-18
设计和开发了屈服强度750 MPa低合金高强度集装箱用钢(/%:0.06~0.09C,0.25~0.35Si,1.60~1.80Mn, ≤0.015P,≤0.003S,0.10~0.20Mo,0.05~0.06Nb,0.09~0.11Ti,≥0.0015Ca,≥0.015Alt)。试验钢的工艺流程为260 t BOF-LF-RH-230 mm板坯连铸-热轧成2~6 mm板。通过Nb-Ti复合微合金化和Ca处理,控制精轧结束温度840~880℃,层流冷却速度≥60℃/s,卷取520~580℃,热轧钢卷的冷却速度≤10℃/h等工艺措施,热轧带钢具有良好的表面质量,组织为细晶铁素体+Nb-Ti碳氮化物,力学性能为上屈服强度760~790 MPa,抗拉强度860~910 MPa,伸长率21%~25%,满足用户要求。  相似文献   

11.
朱红一 《特殊钢》2009,30(3):50-51
安阳钢铁公司通过100 t转炉-100 t LF-200 mm×1 500 mm连铸机-2800 mm中板轧机生产流程开发了Nb微合金化高强度船板。生产数据统计结果表明,通过精确控制钢的成分(%:0.13~0.16C、0.33~0.43Si、1.31~1.42Mn、0.007~0.014P、0.005~0.0185、0.021~0.039A1、0.018~0.022Nb),精轧开始温度950℃,精轧累积压下率≥50%,终轧温度780~850℃,使AH36牌号6~25 mm钢板的晶粒度为9~9.5级,屈服强度360~475 MPa,抗拉强度490~610 MPa,δ5伸长率18%~36%,0℃冲击功110~221J。  相似文献   

12.
杨新武  宛农  周许  王立新 《特殊钢》2013,34(4):56-58
30CrMoA钢(/%:0.30C、0.21Si、0.53Mn、0.003S、0.005P、0.98Cr、0.22Mo、0.06V)除砂器锻件为外径Φ405~493 mm内径Φ90~167 mm的管状工件,技术条件要求调质后-40℃横向冲击功≥20 J。经常用正火+调质工艺920℃正火(风冷)+880℃正火(风冷)+860℃淬火(空冷+水冷)+630~680℃回火(空冷)后横向Rm715~815 MPa,Rp0.2 545~665 MPa, A 19%~20%,Z 65%~68%,室温Akc 36~101 J,-40℃ Akv 11~21 J; 通过Thermo-calc软件计算得出该钢平衡相图及计算的Ac3温度确定优化调质工艺950℃正火(风冷)+820℃淬火(空冷+水冷)+660~670℃回火(空冷),其横向力学性能为R685~700 MPa,Rp0.2 500~525 MPa, A 21%~22%,Z 63%~66%,室温Akv 65~114 J,-40℃ Akv 23~28 J,均符合技术条件要求。  相似文献   

13.
焦国利  刘霞  何文萍 《特殊钢》2013,34(1):34-36
针对轧机产量提高后冷床冷却能力不足的问题,安装了轧后棒材穿水冷却装置。生产结果表明,HRB335Φ16 mm热轧带肋钢筋(/%:0.20C、0.20~0.40Si、0.4~1.2Mn),原终轧速度10.5~11.0 m/s,钢材至冷床温度1020~1050℃,钢筋的屈服、抗拉强度和伸长率分别为342 MPa、520 MPa和16.5%;使用穿水系统后终轧速度提高至11.5~12.0 m/s,钢材至冷床的温度降至880~900℃,通过冷床后降至260℃,钢筋的屈服、抗拉强度和伸长率分别为360 MPa,556 MPa和16.9%,生产率提高3%~5%。  相似文献   

14.
控制冷却对SWRH82B-1V高碳钢盘条组织和性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
华蔚  徐震  宋金玲  张驰  江来珠 《特殊钢》2010,31(1):60-62
用Gleeble-2000热模拟机测定了V微合金化SWRH82B-1V钢(%:0.79C、0.23Si、0.63Mn、0.18Cr、0.05V、0.004 ON)热变形奥氏体连续冷却转变(CCT)曲线,并研究了冷却速度(1~15℃/s)对钢中索氏体和马氏体面积分数和HV硬度值的影响。通过改变斯泰摩尔生产线的冷却风量模式研究了冷却风量对SWRH82B-1V钢Φ12.5 mm盘条组织和力学性能的影响。结果表明,盘条吐丝温度880℃50%风量冷却可使该钢中索氏体组织≥90%,马氏体组织≤0.05%,盘条抗拉强度≥1130 MPa,断面收缩率≥30%。  相似文献   

15.
为了适应深井及超深井应用需求,通过设计化学成分及优化轧制工艺,开发一种兼备强度和低温冲击韧性的油气井用TG22热轧钢带。结果表明:采用化学成分设计为Fe-0.24%C-0.20%Si-1.30%Mn-0.020%Nb时,加热炉目标出钢温度1170℃、中间坯厚度46mm、终轧温度830℃和卷取温度570℃时,热轧钢带力学性能为Rel 506~554 MPa、Rm 654~685 MPa、A5029%~35%、Rel/Rm 0.75~0.82及KV2(-10℃)45.5~63.6 J。  相似文献   

16.
杨伟勇 《特殊钢》2020,41(6):55-59
在化学成分合理设计的基础上HRB400E钢(/%:0.21~0.25C,0.40~0.65Si,1.40~1.55Mn,≤0.040P,≤0.040S,0.015~0.025Nb,0.005~0.008N),研究了不同加热温度及控轧控冷温度对力学性能、金相组织和钢筋表面时效锈蚀的影响。提出了最佳的轧制温度参数:加热温度为1140~1170℃、开轧温度为1 040~1 060℃,精轧温度为1000~1030℃,终轧后的冷床温度是870~890℃。结果表明,铌微合金化HRB400E钢屈服强度450-475MPa,其析出物主要为粒径大小为300~600nm的Nb(C,N),分布在网状碳化物上、网状碳化物边缘以及晶界附近的晶粒内部。  相似文献   

17.
试验低碳贝氏体钢(/%:0.08C,0.11~0.13Si,1.10~1.20Mn,0.008~0.009P,0.002S,0.21~0.23Ni,0.020~0.021Ti,0.003~0.004Nb,0~0.0010B,0.000 7~0.0008O,0.0031~0.0033N)由50kg真空感应炉熔炼,轧成45mm钢板,并经930℃淬火,610℃回火。研究了0.0010%硼对780 MPa低碳贝氏体钢45mm板组织和力学性能的影响。结果表明,硼可显著提高试验钢的淬透性,不含硼试验钢淬火后得到粒状贝氏体,0.0010%硼试验钢淬火后得到板条贝氏体。硼明显改善试验低碳贝氏体钢的力学性能,含0.0010%硼试验钢淬、回火后的抗拉强度834MPa和屈服强度771MPa远高于不含硼试验钢的抗拉强度702MPa和屈服强度591MPa,实际生产中应加入适量硼可使低碳贝氏体钢得到板条贝氏体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号