首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
研究了棉短绒浆、竹浆、阔叶木浆和针叶木浆(均为溶解浆)的纤维素在氢氧化钠/尿素/水体系中的溶解差异,棉短绒浆和竹浆的纤维素溶解后可形成均一的液相体系,而阔叶木浆和针叶木浆的纤维素溶液有分层现象,说明同等条件下棉短绒浆和竹浆的纤维素溶解度较大。4种天然纤维素再生后聚合度和结晶度均有一定程度的降低,棉短绒浆和竹浆的纤维素聚合度从549、624降低至474、555,分别降低了13.6%和11.1%;而针叶木浆和阔叶木浆再生后纤维素的聚合度降低不明显,分别从1067、1460降低至989、1419,只降低了7.3%和2.8%;棉短绒浆和竹浆再生后纤维素结晶度降低的幅度比较大,从66.5%和79.7%降低到18.8%和31.8%,分别降低了71.7%和60.1%;阔叶木浆和针叶木浆再生后纤维素结晶度降低的幅度较小,从76.4%和70.4%降低至62.5%和54.7%,分别降低了18.2%和22.3%;阔叶木浆和针叶木浆的纤维素由于聚合度较大,该体系不能降低其结晶度,因而其溶解度小于棉短绒浆和竹浆的纤维素。处理前后纤维素的红外光谱图基本一致,说明纤维素在该体系溶解过程中并未引入新的基团,氢氧化钠/尿素/水体系为非衍生化纤维素溶剂;处理后,几种样品纤维素Ⅰ的峰强度降低甚至消失,纤维素Ⅱ的峰开始出现,说明用该体系进行处理可使纤维素晶体结构发生转变。  相似文献   

2.
有效地合成了离子液体1-烯丙基-3-甲基咪唑氯代盐([Amim]Cl),并探讨了脱脂棉纤维素在该离子液体中的溶解性能。测定了原、再生纤维素的聚合度,结果表明溶解前后纤维素的聚合度发生了很大变化,随着溶解温度的提高、时间的延长,再生纤维素聚合度降低;采用红外光谱、X-射线衍射及热重分析等手段对脱脂棉纤维素在离子液体[Amim]Cl中溶解和再生前后的结构变化进行了分析。结果表明,脱脂棉纤维素可直接溶解于离子液体[Amim]Cl而不发生其它衍生化反应。再生纤维素较原纤维素结晶状态由纤维素I转变为纤维素Ⅱ,再生后纤维素热分解温度降低,热稳定性略有下降。  相似文献   

3.
以用于生产黏胶纤维的漂白针叶木硫酸盐浆(BSK)和硫酸盐法针叶木溶解浆为原料,通过测定纸浆纤维-纤维素-溶剂(7%NaOH/12%尿素水溶液)溶解体系的透光率及溶解生成的纤维素溶液的黏度、观察纸浆纤维冷冻过程的微观形态、分析溶解前后纸浆纤维长度和宽度的变化、检测未溶部分的X射线衍射谱图,研究对比了这两种浆在7%NaOH/12%尿素水溶液体系中溶解行为的差异。结果表明,相同浆浓下,聚合度高的漂白针叶木硫酸盐浆在7%NaOH/12%尿素水溶液中溶解后体系的透明度比聚合度低的针叶木溶解浆体系的高,前者溶解生成的纤维素溶液的黏度大于后者溶解生成的纤维素溶液的黏度,即纤维素含量高、聚合度低的溶解浆反而较难溶解在7%NaOH/12%尿素水溶液中。针叶木硫酸盐浆溶解后纤维变短且变粗,而针叶木溶解浆因大部分短小纤维被溶解导致溶解后纤维的平均长度变长,且宽度变化较小。针叶木硫酸盐浆保留了完整的纹孔结构,溶剂渗透性较好,其溶解效果优于在制浆过程中细胞壁经受严重破坏的针叶木溶解浆的溶解效果。  相似文献   

4.
为探究离子液体法制备再生纤维性能的影响因素,选用有机溶剂二甲基亚砜(DMSO)分别与离子液体1-烯丙基-3-甲基咪唑醋酸盐([AMIM]Ac)和1-丁基-3-甲基咪唑醋酸盐([BMIM]Ac)构成复配体系作为溶剂溶解竹纤维素浆泊,用湿法纺丝制备再生纤维素纤维,并借助扫描电子显微镜、热性能分析、X射线衍射等手段对再生纤维进行形貌、结构分析和力学性能测试。结果表明:当DMSO含量提高、纺丝原液中离子液体含量降低,再生纤维丝表面的光洁程度和热稳定性先提高后下降,力学性能下降;当竹纤维素含量提高,再生纤维丝的表面更光滑,结晶度、热稳定性、断裂强度提高,纤维直径均变粗;离子液体[AMIM]Ac制得的再生纤维性能较优。  相似文献   

5.
纤维在NaOH-尿素体系中的溶解性能   总被引:2,自引:1,他引:1       下载免费PDF全文
刘睿  韩卿  钱威威 《中国造纸》2015,34(7):18-22
采用NaOH-尿素体系对针叶木浆纤维进行溶解处理,探讨了不同溶解条件对纤维溶解性能的影响,分析了经不同温度处理后未溶解纤维的形态变化,并通过傅里叶红外光谱(FT-IR)、扫描电子显微镜(SEM)和X-射线衍射(XRD)分析,对纤维和再生纤维素纤维的结构和性能进行了表征。结果表明,纤维在NaOH-尿素体系中的最佳溶解温度为-10℃,其溶解过程属于非衍生化性溶解;经碱性溶剂润胀和溶解处理后,纤维形态参数发生明显变化,纤维平均长度值变小和平均宽度值变大,其表面出现一定程度的破坏,纤维素晶型由纤维素I型向纤维素II型转变;与纤维相比较,溶解后再生纤维素的结晶度由66.77%降低到30.47%,并且转化成为纤维素II型。  相似文献   

6.
通过正交实验设计,探讨NaOH/硫脲/尿素溶剂体系中不同组分含量对针叶木纸浆纤维溶解性能的影响,分析经不同温度处理后未溶解纤维的形态变化,并对原料纤维和再生纤维素的结构和性能进行表征。结果表明:当溶解温度-10℃,混合溶剂中NaOH、硫脲、尿素、水的质量比为7:7:7:79时,纸浆纤维的溶解效果最好,且溶解过程属于非衍生化性溶解;经碱脲溶剂润胀和溶解处理后,未溶解纤维的平均纤维长度值变小和平均宽度值变大,纤维表面出现一定程度的破坏,且纤维素晶型由纤维素I型向纤维素II型转变;与原料纤维相比较,溶解后再生纤维素的结晶度由66.77%降低到28.70%,并且转化成为纤维素II晶型。  相似文献   

7.
合成了离子液体1-丁基-3-甲基氯化物([Bmim]Cl)、1-丁基-3-甲基溴化物([Bmim]Br)和1-烯丙基-3-甲基氯化物([Amim]Cl),探索了离子液体对羽毛的溶解与再生规律,并分别采用红外光谱(FT-IR)和X射线衍射(XRD)表征溶解前后羽毛蛋白的化学结构和结晶结构的变化.研究结果表明,羽毛在离子液体[Amim]Cl和[Bmim]Cl中的溶解度分别达到8%(80℃)和5%(80℃),但不溶于离子液体[Bmim]Br.通过羽毛蛋白/离子液体溶液可制备再生羽毛蛋白膜,所得再生羽毛蛋白膜能较好地保持原羽毛蛋白的二次结构,即离子液体是羽毛的非衍生化优良溶剂,经溶解、再生,再生羽毛蛋白膜的结晶度较原羽毛蛋白有所下降.  相似文献   

8.
以1-丁基-3-甲基咪唑氯盐([Bmim]Cl)和1-乙基-3-甲基咪唑醋酸盐([Emim]Ac)两种离子液体作为棉浆粕的溶解体系,并制备了再生棉浆粕纤维素膜,采用红外光谱、X射线衍射、热重分析、扫描电镜和质构仪对棉浆再生前后纤维素膜进行结构表征 结果表明,将棉浆直接溶解在离子液体中,再生后纤维素晶型由Ⅰ型向Ⅱ型的晶型转变,热稳定性略有下降 再生纤维素膜结构致密均匀,力学性能优异,在[Bmim]Cl和[Emim]Ac中拉伸强度分别可达94.55MPa和39.15MPa.  相似文献   

9.
采用2种咪唑氯盐类离子液体溶解回收棉织物,比较棉织物在2种离子液体中不同温度下的溶解度。研究溶解温度对溶解时间和再生纤维素聚合度的影响,表征不同溶解时间下再生纤维素膜的结构及性能。结果表明,该方法可有效地回收再利用棉织物,110℃下1-烯丙基-3-甲基咪唑氯盐溶解质量分数为4%的棉织物再生纤维素膜表面平整,结构致密,断裂强度和断裂伸长率分别为38.5 MPa和6%。随着溶解时间的延长,再生纤维素膜结晶度不断降低,热稳定性变差,力学性能也随之下降。  相似文献   

10.
探究不同交联类型Lyocell纤维在铜乙二胺、氯化锂/N,N-二甲基乙酰胺(LiCl/DMAc)、1-烯丙基-3-甲基氯化咪唑/二甲基亚砜([AMIM]Cl/DMSO)、硫氰化钾/乙二胺(KSCN/EDA)、NaOH/尿素/水等体系中的溶解情况,发现G100纤维能够在铜乙二胺体系、LiCl/DMAc体系以及[AMIM]Cl/DMSO体系中完全溶解,LF纤维只能在[AMIM]Cl/DMSO体系中完全溶解,而A100纤维能够在KSCN/EDA体系、NaOH/尿素/水体系以及[AMIM]Cl/DMSO体系中完全溶解,当溶解时长为72 h时,三种Lyocell纤维在[AMIM]Cl/DMSO体系中均能完全溶解。应用Lyocell纤维溶解体系,以绝对黏度为指标,证明了氢氧化钠处理对交联型Lyocell纤维交联的影响。  相似文献   

11.
新型纤维素纤维的结构和性能   总被引:1,自引:0,他引:1  
通过广角X衍射和扫描电镜研究了氢氧化钠/硫脲/尿素(8:6.5:8)溶剂溶解的棉浆粕(聚合度620)溶液湿法纺丝获得再生纤维素纤维的结构变化。广角X衍射表明,新型纤维素纤维具有典型的纤维素Ⅱ型晶体结构和相当高的结晶度。扫描电镜和光学显微镜图片观察发现纤维的截面呈圆形,类似于天然丝的截面。氢氧化钠/硫脲/尿素溶剂体系是一种低成本、环境友好的溶剂,能够代替目前存在的高污染物排放的再生纤维素纤维生产方法。  相似文献   

12.
为开发利用羽毛绒蛋白资源,研究了其溶解性能,采用三元溶剂、溴化锂和离子液体([Amim]Cl)3 种不同的溶解体系,测试不同溶解工艺参数下羽毛绒的溶解度,并通过纤维图像自动采集和识别系统监控羽毛绒在溶解过程中的形貌变化。结果表明:三元溶剂和溴化锂溶解羽毛绒时溶解度低,而[Amim]Cl能将羽毛绒全部溶解。采用紫外可见分光光度计和傅里叶红外光谱仪对离子液体溶解体系进行测试,结果表明,羽毛绒溶于离子液体在312nm处有特征吸收。基于特征吸收建立了羽毛绒蛋白的定量分析曲线,该曲线具有较高的测试精度;[Amim]Cl可打断羽毛绒蛋白二硫键,且不破坏蛋白质构象。  相似文献   

13.
采用低温氢氧化钠-尿素-硫尿水溶液体系溶解木质纤维素,研究纤维素在高温高压下不同保温时间对纤维素在碱液中溶解度的影响,并测定纤维素的聚合度。结果发现,高温高压反应在一定程度上降低了纤维素聚合度,提高溶解度,经过高温高压处理,不添加表面活性剂,反应时间1h,纤维素的溶解效果最好。  相似文献   

14.
有色废弃棉织物数量庞大,但其回收需经过剥色再染色处理,工艺复杂、能源消耗大.经预处理后,不同聚合度的有色废弃棉织物可直接溶解在[Bmim]Cl/DMSO体系和NMMO/H2 O体系中,凝固再生后制备得到有色再生纤维素膜制品.本文通过偏光显微镜观察纤维素在两种溶剂体系中的溶解情况,使用色强度指标表征颜色保留情况,并采用红...  相似文献   

15.
猪皮胶原蛋白在1-丁基-3-甲基氯代咪唑中的溶解性能   总被引:1,自引:0,他引:1  
合成了1-丁基-3-甲基氯代咪唑([Bmim]Cl)离子液体,利用傅里叶红外光谱仪对其进行了表征,将其作为溶剂,溶解不同质量的废弃猪皮胶原蛋白粉.通过普通水浴加热,微波辐射水浴加热和微波直接辐射加热三种方式研究了离子液体对胶原蛋白的溶解能力,对不同质量浓度的溶液进行傅里叶变换红外测定,分析溶液中的胶原蛋白结构的变化,最后,对溶液进行再生得到皮胶原蛋白膜,并进行红外分析.实验结果表明,猪皮胶原的溶解程度和加热方式、温度、时间等参数密切相关.在室温至70 ℃范围内,在三种加热方式中,微波加热溶解程度优于水浴加热溶解程度;在5%、8%质量分数的溶液中,微波、水浴和微波水浴加热方式下,随着温度升高,溶解度增大;加热时间增长,溶解效果增加,最大溶解度可达10%;此外,猪皮胶原蛋白在离子液体中有稳定性,在溶解与再生前后蛋白质结构未发生变化.  相似文献   

16.
天然胶原纤维被成功地溶解于1-丁基-3-甲基咪唑氯化物([BMIM]Cl)离子液体中,并且在不同的沉淀剂中再生。在偏光显微镜中观察,发现胶原纤维的晶体结构在加热过程中已经被[BMIM]Cl破坏了。利用变温红外光谱法检测溶解过程中胶原/[BMIM]Cl的结构变化。利用FTIR和XRD表征再生胶原的结构。结果表明,胶原蛋白的三螺旋结构在溶解与再生过程中一定程度上被破坏了。沉淀的处理很大程度上决定了再生胶原的成膜能力和热稳定性,提出了胶原在[BMIM]Cl中溶解以及在沉淀剂中再生的可能机制。利用[BMIM]Cl作为介质可以成功制备不同形态(薄膜,纤维,凝胶)的胶原蛋白/纤维素复合材料。  相似文献   

17.
本研究以针叶木浆为原料,通过冷碱抽提、过氧化氢降聚、乙酸酸化等工艺制备可达到Lyocell纤维纺丝用标准的溶解浆。结果表明,采用针叶木浆制备的溶解浆达到Lyocell纤维纺丝用标准;溶解浆中α-纤维素含量达到96.12%,纤维素聚合度降至653,灰分含量0.07%,铁离子含量小于4 mg/kg;溶解浆在N-甲基吗啉-N-氧化物(NMMO)中的溶解性能显著提升。  相似文献   

18.
在微波作用下用离子液体1-乙基-3-甲基咪唑乙酸盐(EmimOAc)溶解经球磨并脱脂脱蜡后的毛竹竹粉,通过激光扫描共聚焦显微镜观察了竹粉在离子液体中的溶解过程。微波辐射60 min后可以实现竹粉在离子液体中的完全溶解。在离子液体/竹粉溶液中加入反溶剂可得到结构均匀的富含纤维素物质,最大得率为62.7%。Klason木素含量与FT-IR、XRD和SEM的分析结果表明,EmimOAc能够有效去除竹粉中的木素,最高去除率为57.1%;经离子液体处理后竹粉中的糖类物质含量增加;纤维素结晶度明显降低,晶型从I型转变为II型。  相似文献   

19.
以棉短绒或木材纤维形式存在的纤维素,可以经过活化方法(高温下氨、水或溶剂活化)溶解在二甲基乙酰胺/氯化锂水溶增溶剂体系中,这种浓度为4-6%的溶液在湿法纺丝时,纤维素就再生为纤维或薄膜.按此工艺生产的纤维素纤维具有2 cN/dtex的断裂强度、6.5-9.0%的断裂伸长和80-105cN/dtex的初始模量(1%).纺丝实验研究了溶液  相似文献   

20.
本文研究了离子液体[Bmin]CI直接处理麦草秸秆与碱抽提/离子液体处理麦草秸秆两种预处理工艺,采用SEM与XRD技术,通过酶解速率、表面形貌变化、结晶度与晶型变化的对比,发现碱处理提高了麦草秸秆在离子液体中的溶解度与溶解速率;麦草秸秆经过离子液体溶解再生后,再生纤维素结晶度由57%降为38%,且晶型发生变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号